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Preface

The School of Mathematics of the Aristotle University became 90 years old
in 2018. As is customary, every ten years, the anniversary is celebrated with a
number of events. This time, a two-day scientific symposium was suggested,
with lectures by former students, and members of the Department, in order
to give an overview of the scientific fields that are treated by members and
former students of the Department. A total of 26 lectures were given, and the
present volume contains 17 contributions: 13 in Theoretical Mathematics (7
in Analysis, 3 in Algebra and 4 in Geometry) and 3 in Applied Mathematics.
The topics cover areas such as logic, statistics, number theory, topology, com-
plex analysis, harmonic analysis, probability theory, differential geometry and
computer science.

We express our thanks to all who contributed to this volume.

On behalf of the organizing committee,

Michel Marias
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Chair’s message

The conference marks the 90th anniversary for the School of Mathematics
of Aristotle University of Thessaloniki: in November of 1928, the School of
Mathematics accepted its first students. The founding act for the University
was published in the Government’s Gazette in 1925. Let us place this in his-
torical context. The immense changes that took place over the course of two
decades in Greece give the perspective: the Goudi coup signaling the end of
the old political system and the arrival of Eleftherios Venizelos, the First and
Second Balkan War with Macedonia and Thessaloniki becoming an integral
part of Greece, the First World War, the Treaty of Sevres, the Asia Minor
Catastrophe and finally the Treaty of Lausanne in 1923—at the end, despite
the final trauma, Greece stood doubled in size and population. The University
of Thessaloniki, was founded to be the intellectual beacon for the recently
acquired lands. In 1928, the School of Mathematics started its operations,
one of the first departments of the new institution. Since then, it contributed
significantly to Greece’s higher education, to the field’s scientific research, to
the society and to the economy of Macedonia and Northern Greece. Two of
its faculty members made rectors of the University at the most critical times
of Greece’s history, five more entered the Academy of Sciences. The School
has produced more than 10,600 undergraduate, 550 master’s and 240 PhD de-
gree holders. Some of its graduates successfully pursued academic careers in
Greece and abroad, others got employed in secondary education, public and
private organizations and businesses, obtaining administrative positions.



iv Chair’s message

At the beginning, 90 years ago, the entrance class consisted of five stu-
dents, amongst them one woman. At the time, the Faculty of Sciences had a
single mathematics professor to its faculty. Today, the entrance class is close
to three hundred students, half of them women while the faculty (professors
and lecturers) is up to thirty people. There are new challenges for the School
these days. The financial crisis has taken its toll and the School has been de-
pleted of resources and people. These losses are very much felt. However
despite the adversities, the School of Mathematics managed to keep its pace,
offering a high level of undergraduate and graduate education with consistent
research output and publications. The aim of the “90 Years School of Math-
ematics of Aristotle University of Thessaloniki” conference is to present new
research developments from various areas of mathematics covering all areas
represented by the School’s five departments and at the same time to bring to-
gether students and alumni, now renowned researchers, in Greece and abroad.

The future goals for the School are clear. We work so that when time
comes for the 100th anniversary, we will report new strengths and continuing
contributions to science, education, economy and society.

Hara Charalambous
Chair

School of Mathematics,
Aristotle University of Thessaloniki

Excerpts from the Chair’s welcoming remarks at the opening ceremony
“90 Years School of Mathematics of Aristotle University of Thessaloniki”

conference (translation from Greek).
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The Integrated Pearson Family
of distributions and its orthogonal

polynomials

Georgios Afendras
School of Mathematics, Aristotle University of Thessaloniki,

Thessaloniki, 54124, Greece
gafendra@math.auth.gr

Abstract. An alternative classification of the Pearson family of probability
densities is related to the orthogonality of the corresponding Rodrigues poly-
nomials. This leads to a subset of the ordinary Pearson system, the so-called
Integrated Pearson Family. Basic properties of this family are presented. For
an absolutely continuous random variable X of the Integrated Pearson family,
under natural moment conditions, a Stein-type covariance identity of order k
holds. This identity is closely related to the corresponding sequence of or-
thogonal polynomials and provides convenient expressions for the Fourier co-
efficients of an arbitrary function. Applications of Bessel inequality and Par-
seval identity produce a wide class of upper/lower variance bounds of g(X),
in terms of the derivatives of g up to some order.
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1 Introduction

[53], in the context of fitting curves to real data, introduced his famous family
of frequency curves by means of the differential equation

f ′(x)/ f (x) = p1(x)/p2(x),

where f is the probability density and pi is a polynomial in x of degree at
most i, i = 1,2. Since then, a vast bibliography has been developed regarding
the properties of Pearson distributions. The original classification given by
Pearson contains twelve types (I–XII), although this numbering system does
not have a clear systematic basis; [34, p. 16], [24] proposed a new exposi-
tion and chart for Pearson curves; however, a more reasonable and convenient
classification is included in a review paper by [25]. Extensions to discrete dis-
tributions have been introduced by [47] and an extensive review can be found
in [48, Chap. 1].

First we define suitable subset of Pearson distributions, so-called Inte-
grated Pearson Family.

Definition 1 (Integrated Pearson Family). Let X be an absolutely continuous
random variable with density f and finite mean µ = EX. We say that X (or
its density) belongs to the integrated Pearson family (or integrated Pearson
system) if there exists a quadratic polynomial q(x) = δx2 +βx+ γ such that∫ x

−∞

(µ− t) f (t)dt = q(x) f (x) for all x ∈ R. (1)

This fact will be denoted by X ∼ IP(µ;q) or f ∼ IP(µ;q) or, more explicitly,
X or f ∼ IP(µ;δ ,β ,γ).

In the sequel and elsewhere in this article, X ∼ IP(µ;δ ,β ,γ) means that
X has finite mean µ , and that X admits a density f (w.r.t. Lebesgue measure
on R) such that (1) is fulfilled.

For an r.v. X with density f , mean µ and finite variance σ2, [27, 49]
showed the identity

Cov[X ,g(X)] = σ
2Eg′(X∗), (2)
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which holds for any absolutely continuous function g : R→R with a.s. deriva-
tive g′, such that the rhs is finite. In (2), X∗ is defined to be the r.v. with density
f ∗(x) = 1

σ2

∫ x
−∞

(µ− t) f (t)dt = 1
σ2

∫
∞

x (t−µ) f (t)dt, x ∈ R.
Identity (2) extends the well-known Stein identity [59, 60] for the standard

Normal Z,
Cov[Z,g(Z)] = Eg′(Z).

Clearly, if X ∼ IP(µ;q), the covariance identity (2) can be rewritten as

E(X−µ)g(X) = Eq(X)g′(X), (3)

(see[20, 49]).
Let Z be a standard normal random variable and g : R→ R any abso-

lutely continuous function with derivative g′. [23], using Hermite polynomi-
als, proved that (see also the previous papers by[45, 14])

Varg(Z)≤ E[g′(Z)]2, (4)

provided that E[g′(Z)]2 < ∞, where the equality holds if and only if g is a
polynomial of degree at most one – a linear function. This inequality plays
an important role in the isoperimetric problem and has been extended and
generalized by several authors. On the other hand, [15] showed the inequality

Varg(Z)≥ E2g′(Z), (5)

in which the equality again holds if and only if g is linear.
Let X ∼ IP(µ;q). For suitable function g, [33] established Poincaré-type

upper/lower bounds for the variance of g(X) of the form

(−1)n[Varg(X)−Sn]≥ 0, where Sn =
n

∑
k=1

(−1)k−1Eqk(X)
(
g(k)(X)

)2

k!∏
k−1
j=0(1− jδ )

.

(6)
In particular, for the normal see [51] and [32]; for the gamma see [51].

The rest of this paper is organized as follows. In 2 we present a complete
classification of the Integrated Pearson family of distributions. Section 3 pro-
vides recurrences between the orthonormal polynomials and their derivatives;
in fact, the derivatives themselves are orthogonal polynomials with respect to
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other integrating Pearson densities, having the same quadratic polynomial, up
to a scalar multiple. We notice that such recurrences are particularly useful
in obtaining Fourier expansions of the derivatives of a function of a Pearson
variate. The main result of this section is given by Corollary 5. It provides
an explicit relation (in terms of µ and q) between the mth derivative of an
orthonormal polynomial of degree k ≥ m and the corresponding orthonormal
polynomial of degree k−m. That is, it relates the orthonormal polynomial
system, associated with some f ∼ IP(µ;q), to the corresponding orthonormal
polynomial system associated with the ‘target’ density fm ∝ qm f . This is uti-
lized in Section 4 where, upon applying the Fourier-series expansions of the
a function g, we present a wide class of (upper/lower) bounds for Varg(X).
Finally, the reference section offers a general/complete literature for these top-
ics.

2 A complete classification of the Integrated Pearson
family

We show in this section that the Integrated Pearson family contains six differ-
ent types of distributions. These are classified in terms of the corresponding
quadratic polynomial q(x) = δx2 +βx+ γ and its discriminant ∆ = β 2−4δγ

as it is presented in Table 2 below. The proposed classification is very similar
to the one given by [25, Table2, pp.294–296].

First, we define the essential support of a random variable. Let X ∼ F .
Define the essential support of X to be the open (bounded or unbounded)
interval

J = J(X)
.
= (essinf(X),esssup(X)) = (α,ω),

where α = αF
.
= inf{x : F(x)> 0} and ω = ωF

.
= sup{x : F(x)< 1}. We now

state an easily verified proposition.

Proposition 1. Let X ∼ IP(µ;q) and set J = (α,ω) = (essinf(X),esssup(X)).
Then,

1o f (x) is strictly positive for x in J and zero otherwise, i.e., {x : f (x) >
0}= J;

2o f ∈C∞(J), that is, f has derivatives of any order in J;
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3o X is a (usual) Pearson random variable supported in J;

4o q(x) = δx2 +βx+ γ > 0 for all x ∈ J;

5o if α >−∞ then q(α) = 0 and, similarly, if ω < ∞ then q(ω) = 0;

6o for any θ ,c∈R with θ 6= 0, the random variable X̃ .
= θX +c∼ IP(µ̃; q̃)

with µ̃ = θ µ + c and q̃(x) = θ 2q((x− c)/θ).

In view of Table 1, immediately we have the following result.

Corollary 1. Let X ∼ IP(µ;δ ,β ,γ).

1o If δ ≤ 0 then E |X |θ < ∞ for any θ ∈ [0,∞).

2o If δ > 0 then E |X |θ < ∞ for any θ ∈ [0,1+1/δ ), while E |X |1+1/δ = ∞.

Next, we shall obtain a recurrence for the moments and the central mo-
ments of a random variable X ∼ IP(µ;δ ,β ,γ).

Lemma 1. If X ∼ IP(µ;δ ,β ,γ) and E|X |n < ∞ for some n ≥ 2 (that is,
δ < 1/(n− 1)) then for any c ∈ R, the central moments around c satisfy the
recurrence

E(X− c)k+1 = (µ−c+kq′(c))E(X−c)k+kq(c)E(X−c)k−1

1−kδ
, k = 1, . . . ,n−1,

with initial conditions E(X−c)0 = 1, E(X−c)1 = µ−c, where q(c) = δc2+
βc+ γ , q′(c) = 2δc+β . In particular,

1o the usual moments (c = 0) satisfy the recurrence

EXk+1 =
(µ + kβ )EXk + kγEXk−1

1− kδ
, k = 1, . . . ,n−1,

with initial conditions EX0 = 1 and EX1 = µ;

2o the central moments (c = µ) satisfy the recurrence

E(X−µ)k+1 = kq′(µ)E(X−µ)k+kq(µ)E(X−µ)k−1

1−kδ
, k = 1, . . . ,n−1,

with initial conditions E(X−µ)0 = 1 and E(X−µ)1 = 0.
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3 Orthogonality of the Rodrigues-type polynomials and
of their derivatives within the Integrated Pearson
family

Assume that f is the density of a random variable X ∼ IP(µ;q)≡ IP(µ;δ ,β ,γ)
with support (α,ω). The function

Pk(x) =
(−1)k

f (x)
dk

dxk [q
k(x) f (x)], x ∈ (α,ω), k = 0,1, . . . , (7)

is a polynomial with

deg(Pk)≤ k and lead(Pk) =
2k−2

∏
j=k−1

(1− jδ ) .
= ck(δ ), k = 0,1, . . . , (8)

see [29, 10]. Obviously c0(δ )
.
= 1, i.e. an empty product should be treated

as one. [52] showed that, under appropriate moment conditions, the functions
{Pk}M

k=0 (where M can be finite or infinite) are orthogonal polynomials with
respect to the density f , so that, the quadratic q(x) in (1) generates a sequence
of orthogonal polynomials by the Rodrigues-type formula (7).

Theorem 1. Let X ∼ IP(µ;q) ≡ IP(µ;δ ,β ,γ) with density f and support
(α,ω). Assume that X has 2k finite moments for some fixed k ∈ {1,2, . . .}. Let
g : (α,ω)→R be any function such that g∈Ck−1(α,ω), and assume that the
function g(k−1)(x) .

= dk−1g(x)/x. k−1 is absolutely continuous in (α,ω) with al-
most everywhere derivative g(k). If Eqk(X)|g(k)(X)|<∞, then E|Pk(X)g(X)|<
∞ and the following covariance identity holds

EPk(X)g(X) = Eqk(X)g(k)(X). (9)

Corollary 2. Let X ∼ IP(µ;q) ≡ IP(µ;δ ,β ,γ). Assume that for some n ∈
{1,2, . . .}, E |X |2n < ∞ or, equivalently, δ < 1/(2n−1). Then,

EPk(X)Pm(X) = δk,mk!Eqk(X)
2k−2

∏
j=k−1

(1− jδ )

= δk,mk!ck(δ )Eqk(X), k,m ∈ {0, . . . ,n},
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where δk,m is Kronecker’s delta and where an empty product should be treated
as one.

It should be noted that the orthogonality of Pk and Pm, k 6= m, k,m ∈
{0, . . . ,n}, remains valid even if δ ∈ [1/(2n− 1),1/(2n− 2)); in this case,
however, Pn 6∈ L2(R,X) since lead(Pn) > 0 and E |X |2n = ∞. On the other
hand, in view of Corollary 1, the assumption E |X |2n < ∞ is equivalent to the
condition δ < 1/(2n− 1). Therefore, for each k ∈ {0, . . . ,n} and for all j ∈
{k−1, . . . ,2k−2}, 1− jδ > 0 because {k−1, . . . ,2k−2} ⊆ {0, . . . ,2n−2}.
Thus, ck(δ ) > 0. Since Pr[q(X) > 0] = 1, deg(q) ≤ 2 and E |X |2n < ∞ we
conclude that 0 < Eqk(X) < ∞ for all k ∈ {0, . . . ,n}. It follows that the set
{φ0, . . . ,φn} ⊂ L2(R,X), where

φk(x)
.
=

Pk(x)

(k!ck(δ )Eqk(X))
1/2 , k = 0, . . . ,n, (10)

is an orthonormal basis of all polynomials with degree at most n. Moreover,
(8) shows that the leading coefficient is given by

lead(φk)≡ dk(µ;q) .
=

(
ck(δ )

k!Eqk(X)

)1/2

> 0, k = 0, . . . ,n. (11)

Let X be any random variable with EX |2n < ∞ and assume that the sup-
port of X is not concentrated on a finite subset of R. It is well known that
we can always construct an orthonormal set of real polynomials up to order n.
This construction is based on the first 2n moments of X and is a by-product
of the Gram-Schmidt orthonormalization process, applied to the linearly in-
dependent system {1,x,x2, . . . ,xn} ⊂ L2(R,X). The orthonormal polynomials
are then uniquely defined, apart from the fact that we can multiply each poly-
nomial by ±1. It follows that the standardized Rodrigues polynomials φk of
(10) are the unique orthonormal polynomials that can be defined for a density
f ∼ IP(µ;q), provided that lead(φk)> 0. Therefore, it is useful to express the
L2-norm of each Pk in terms of the parameters δ ,β ,γ and µ and, in view of
(9) and (10), it remains to obtain an expression for Eqk(X). To this end, we
first recall a definition from [49]; cf. [27].
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Definition 2. Let X ∼ f and assume that X has support J(X) = (α,ω) and
belongs to the integrated Pearson family, that is, f ∼ IP(µ;q)≡ IP(µ;δ ,β ,γ).
Furthermore, assume that EX2 < ∞ (i.e. δ < 1). Then we define X∗ to be the
random variable with density f ∗ given by

f ∗(x) .
=

q(x) f (x)
Eq(X)

, α < x < ω.

Since P1 = x− µ , setting k = 1 in the covariance identity (9) we get the
covariance identity (3).

This identity is valid for all absolutely continuous functions g : (α,ω)→
R with a.s. derivative g′ such that Eq(X)|g′(X)| < ∞. Thus, applying (2) to
the identity function g(x) = x it is easily seen that Eq(X) = VarX = σ2, so
that [27]

X∗ ∼ f ∗(x) =
1

σ2 q(x) f (x), α < x < ω.

The following lemma shows that X∗ is integrated Pearson whenever X is inte-
grated Pearson and has finite third moment.

Lemma 2. If X ∼ IP(µ;q) ≡ IP(µ;δ ,β ,γ) with support J(X) = (α,ω) and
E|X |3 <∞ then X∗∼ IP(µ∗;q∗) with the same support J(X∗)= J(X)= (α,ω),

µ
∗ =

µ +β

1−2δ
, and q∗(x) =

q(x)
1−2δ

, α < x < ω.

Theorem 2. Let X be a random variable with density f ∼ IP(µ;q)≡ IP(µ;δ ,β ,γ),
supported in J(X) = (α,ω). Furthermore, assume that E|X |2n+1 < ∞ (i.e.
δ < 1/(2n)) for some fixed n∈ {0,1, . . .}. Define the random variable Xk with
density fk given by

fk(x)
.
=

qk(x) f (x)
Eqk(X)

, α < x < ω, k = 0, . . . ,n.

Then, fk ∼ IP(µk;qk) with (the same) support J(Xk) = J(X) = (α,ω),

µk =
µ + kβ

1−2kδ
and qk(x) =

q(x)
1−2kδ

, α < x < ω, k = 0, . . . ,n.

Moreover, X0 = X, X1 = X∗, X2 = X∗1 and, in general, Xk = X∗k−1 for k ∈
{1, . . . ,n}.
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Corollary 3. If X ∼ IP(µ;q) and E|X |2n+2 < ∞ (equivalently, if δ < 1/(2n+
1)) then for each k ∈ {0, . . . ,n},

σ
2
k
.
= VarXk = Eqk(Xk) =

q({µ + kβ}/{1−2kδ})
1− (2k+1)δ

,

where qk(x) = δkx2 +βkx+ γk and Xk are as in Theorem 2. In particular, if
δ < 1 then

σ
2 .
= VarX = Eq(X) =

q(µ)
1−δ

.

Corollary 4. If X ∼ IP(µ;q) and E|X |2n < ∞ for some n≥ 1 (i.e. δ < 1
2n−1 ),

then for each k ∈ {1, . . . ,n},

Ak = Ak(µ;q) .
= Eqk(X) =

∏
k−1
j=0(1−2 jδ )

∏
k−1
j=0(1− (2 j+1)δ )

k−1

∏
j=0

q
(

µ + jβ
1−2 jδ

)
. (12)

Remark 1. 1o It is important to note that the identity (9) enables a conve-
nient calculation of the Fourier coefficients of any smooth enough func-
tion g with Varg(X)< ∞ (i.e., g ∈ L2(R,X)). Indeed, if X ∼ IP(µ;q)≡
IP(µ;q) and E|X |2n <∞ then the Fourier coefficients ck =E/φk(X)g(X)
are given by c0 = Eg(X) and

ck =
Eqk(X)g(k)(X)

(k!ck(δ )Ak(µ;q))1/2 , k = 1, . . . ,n,

where ck(δ ) and Ak(µ;q) are given by (8) and (12), respectively, pro-
vided that g is smooth enough so that Eqk(X)|g(k)(X)| < ∞ for k ∈
{1, . . . ,n}.

2o Obviously, if X ∼ IP(µ;q) and δ ≤ 0 (i.e. if X is of Normal, Gamma
or Beta-type) then E|X |n < ∞ for all n. Moreover, since there exists an
ε > 0 such that EetX < ∞ for |t| < ε it follows that the corresponding
polynomials {φk}∞

k=0, given by (10), form a complete orthonormal sys-
tem in L2(R;X); (see, e.g., [57, 11, 8]). Therefore, for smooth enough
g with Varg(X)< ∞ and Eqk(X)|g(k)(X)|< ∞ for all k≥ 1, the Fourier
coefficients are given by

ck = Eφk(X)g(X) =
Eqk(X)g(k)(X)

(k!ck(δ )Ak(µ;q))1/2 , k = 0,1, . . . ,
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and the variance of g can be calculated as

Varg(X) =
∞

∑
k=1

E2qk(X)g(k)(X)

k!ck(δ )Ak(µ;q)
. (13)

Furthermore, when X ∼ IP(µ;δ ,β ,γ) with δ ≤ 0, the completeness of
the Rodrigues polynomials enables one to write

Cov[g1(X),g2(X)] =
∞

∑
k=1

E[qk(X)g(k)1 (X)]E[qk(X)g(k)2 (X)]

k!ck(δ )Ak(µ;q)
, (14)

provided that for i = 1,2, gi ∈ L2(R,X) and Eqk(X)|g(k)i (X)| < ∞ for
all k ≥ 1. The important thing in (13) and (14) is that we do not need
explicit forms for the polynomials; in view of (8) and (12), everything
is calculated from the four numbers (µ;δ ,β ,γ) and the derivatives of g
or gi (i = 1,2).

Theorem 3. If X ∼ IP(µ;δ ,β ,γ) with support J(X) = (α,ω) and E|X |2n < ∞

for some n≥ 1 (i.e. δ < 1/(2n−1)) then

P(m)
k+m(x) =C(m)

k (δ )Pk,m(x), m = 1, . . . ,n, k = 0, . . . ,n−m,

where

C(m)
k (δ )

.
=

(k+m)!
k!

(1−2mδ )k
k+2m−2

∏
j=k+m−1

(1− jδ ).

Here, Pk are the polynomials given by (7) associated with f , and Pk,m are
the corresponding Rodrigues polynomials of (7), associated with the density
fm(x) ∝ qm(x) f (x), α < x < ω , of the random variable Xm ∼ IP(µm;qm) of
Theorem 2, i.e.,

Pk,m(x)
.
=

(−1)k

fm(x)
dk

dxk [q
k
m(x) fm(x)] =

(−1)k

(1−2mδ )kqm(x) f (x)
dk

dxk [q
k+m(x) f (x)],

α < x < ω, k = 0, . . . ,n−m.

The following corollary contains the main interest regarding Fourier ex-
pansions within the Pearson family and, to our knowledge, it is not stated
elsewhere in the present simple, unified, explicit form.
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Corollary 5. Let X ∼ IP(µ;δ ,β ,γ) ≡ IP(µ;q) with support (α,ω), and as-
sume that E|X |2n < ∞ for some fixed n≥ 1 (equivalently, δ < 1/(2n−1)). Let
{φk}n

k=0 be the orthonormal polynomials associated with X (with lead(φk)> 0
for all k; see (10), (11)), fix a number m ∈ {0, . . . ,n}, and consider the cor-
responding orthonormal polynomials {φk,m}n−m

k=0 , with lead(φk,m)> 0, associ-
ated with

Xm ∼ fm(x) =
qm(x) f (x)
Eqm(X)

, α < x < ω.

Then there exist constants ν
(m)
k = ν

(m)
k (µ;q)> 0 such that

φ
(m)
k+m(x) = ν

(m)
k φk,m(x), α < x < ω, k = 0, . . . ,n−m.

Specifically, the constants ν
(m)
k have the explicit form

ν
(m)
k = ν

(m)
k (µ;q) .

=

{ (k+m)!
k! ∏

k+2m−2
j=k+m−1(1− jδ )

Am(µ;q)

}1/2

,

where Am(µ;q) = Eqm(X) is given by (12). In particular, setting σ2 = VarX
we have

φ
′
k+1(x) =

√
(k+1)(1− kδ )

σ
φk,1(x) =

√
(k+1)(1−δ )(1− kδ )

q(µ)
φk,1(x),

k = 0, . . . ,n−1.

4 Applications to variance bounds

This section presents a wide class of variance bounds. First, we state some
useful definitions and results.

Assume that X ∼ IP(µ;q), and denote by q(x) = δx2 + βx+ γ and J =
(α,ω) its quadratic polynomial and support respectively. Fix m,n ∈ Z+ such
that E|X |2` is finite, where ` = max{m,n}. We shall denote by H m,n(X) the
class of Borel functions g : (α,ω)→ R satisfying the following properties.

1o H1 : g ∈C`−1(α,ω) and the function g(`−1)(x) .
= d`−1g(x)/dx`−1 is

absolutely continuous in (α,ω) with almost everywhere derivative g(`).
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2o H2 : Eqn(X)
(
g(n)(X)

)2
< ∞ and Eqm(X)|g(m)(X)|< ∞.

Furthermore, we shall denote by H ∞,n(X) and H ∞(X)≡H m,∞(X) [m is ar-
bitrary because in this case this index is insignificant] the classes of functions

H ∞,n(X)
.
=

∞⋂
m=0

H m,n(X) and H ∞(X)
.
=

∞⋂
n=0

H ∞,n(X).

Lemma 3. Let X ∼ IP(µ;q)≡ IP(µ;δ ,β ,γ), and consider k ∈Z+∪{∞} with
EX2k < ∞ whenever k < ∞ and E|X |r < ∞ for all r = 0,1, . . . when k < ∞.

1o If g ∈H k,0(X), then g ∈H i,0(X) for all i ∈ Z+∩ [0,k];

2o If g∈H 0,k(X), then g∈H 0,i(X) for all i∈Z+∩[0,k] (where H 0,∞(X)≡
H ∞(X).

It is obvious that H 0,n = H 1,n = · · · = H n,n. More general, the (finite
or infinite) sequence H m,n(X) is decreasing in m and in n. In particular, if all
moments of X exist then

L2(R,X)≡H 0,0(X)

⊂

H 1,0(X)⊇H 1,1(X)

⊂ ⊂

H 2,0(X)⊇H 2,1(X)⊇H 2,2(X)

⊂ ⊂ ⊂...
...

...

⊂ ⊂ ⊂

H ∞,0(X)⊇H ∞,1(X)⊇H ∞,2(X)⊇·· ·⊇H ∞(X).

Let X ∼ IP(µ;δ ,β ,γ) with δ ≤ 0 and m,n be two (fixed) non-negative
integers; and consider a function g ∈H m,n(X). Write as ck = Eg(X)ϕk(X),
k = 1,2, . . ., the Fourier coefficients of g with respect to the corresponding (to
X) orthonormal polynomial system {ϕk}∞

k=0. Then,

Varg(X) =
∞

∑
k=1

c2
k ; (15a)

Eqi(X)
(

g(i)(X)
)2

=
∞

∑
k=i

(
(k)i

k+i−2

∏
j=k−1

(1− jδ )

)
c2

k , i = 0, . . . ,n; (15b)
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Eqi(X)g(i)(X) =

(
i!Eqi(X)

2i−2

∏
j=i−1

(1− jδ )

)1/2

ci, i = 0, . . . ,m. (15c)

Let X ∼ IP(µ;δ ,β ,γ) with δ ≤ 0 and m,n be two (fixed) non-negative
integers; and consider a function g ∈H m,n(X). Write as ck = Eg(X)ϕk(X),
k = 1,2, . . ., the Fourier coefficients of g with respect to the corresponding (to
X) orthonormal polynomial system {ϕk}∞

k=0. Then,

Varg(X) =
∞

∑
k=1

c2
k ; (16a)

Eqi(X)
(

g(i)(X)
)2

=
∞

∑
k=i

(
(k)i

k+i−2

∏
j=k−1

(1− jδ )

)
c2

k , i = 0, . . . ,n; (16b)

Eqi(X)g(i)(X) =

(
i!Eqi(X)

2i−2

∏
j=i−1

(1− jδ )

)1/2

ci, i = 0, . . . ,m. (16c)

Using Equations (16) and Dougall’s identity, the following theorem fol-
lows.

Theorem 4. Let X ∼ IP(µ;δ ,β ,γ) with δ ≤ 0. Fix two non-negative integers
m,n [with n 6= 0] and a function g ∈H m,n(X). Consider the quantity

Sm,n(g) =
m

∑
i=1

aiE2qi(X)g(i)(X)+
n

∑
i=1

(−1)i−1biEqi(X)
(

g(i)(X)
)2

, (17)

where

ai
.
=

(m
i

)
∏

m+n+i−1
j=m+i (1− jδ )

(m+n)iEqi(X)
(

∏
2i−2
j=i−1(1− jδ )

)
∏

m+n−1
j=m (1− jδ )

,

bi
.
=

(n
i

)
(m+n)i ∏

m+i−1
j=m (1− jδ )
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are strictly positive constants (depending only on m,n and X) and the empty
sums (when m or n = 0) are treated as zero. Then the following inequality
holds:

(−1)n{Varg(X)−Sm,n(g)} ≥ 0,

and where Sm,n(g) becomes equal to Varg(X) if and only if

Pr{g(X) = Polm+n(X)}= 1,

where Polm+n is a polynomial of degree at most m+n.

For the normal distribution case, X ∼ N(µ,σ2) = IP(µ;0,0,σ2), the vari-
ance bound given by (17) takes the form

Sm,n(g) =
m

∑
i=1

(m
i

)
σ2i

(m+n)i
E2g(i)(X)+

n

∑
i=1

(−1)i−1

(n
i

)
σ2i

(m+n)i
E
(

g(i)(X)
)2

.

An application of Theorem 4 to Z yields, for m = n = 1, the inequality

Varg(Z)≤ 1
2
E2g′(Z)+

1
2
E(g′(Z))2, (18)

in which the equality holds if and only if g is a polynomial of degree at most
two. In view of (5) it is clear that the upper bound in (18) improves the one
given in (4) and, in fact, it is strictly better, unless g is linear.

We compare the bounds Sm,n(g) of Theorem 4.

Theorem 5. Let X ∼ IP(µ;δ ,β ,γ) with δ ≤ 0. Fix the positive integer n and
consider a function g ∈H M,n(X), where M can be finite (M ≥ n) or infinite.
Then for each m1,m2 such that 0 ≤ m1 < m2 ≤ M the following inequality
holds

|Varg(X)−Sm1,n(g)| ≥ ζm1,m2,n(δ ) |Varg(X)−Sm2,n(g)| , (19)

where

ζm1,m2,n(δ )
.
= (m2 +n)n

m2+n−1

∏
j=m2

(1− jδ )
/
(m1 +n)n

m1+n−1

∏
j=m1

(1− jδ )> 1.

The equality holds if and only if the function g : J(X)→ R is a polynomial of
degree at most n+m1.
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Remark 2. Assume the conditions of Theorem 5.

(a) From (19) it is follows that the bound Sm2,n(g) is better than the bound
Sm1,n(g). Writing n = 2r (when n is even) or n = 2r+1 (when n is odd)
we observe that

S0,2r(g)≤ S1,2r(g)≤ ·· · ≤ Varg(X)≤ ·· · ≤ S1,2r+1(g)≤ S0,2r+1(g).

(b) For the case M = ∞, from (16a), (17) and ((a)) it follows that
Sm,n(g)↗Varg(X)
[when n is even]

or Sm,n(g)↘Varg(X)
[when n is odd]

as m→∞.

We now compare the variance bounds Sn
(
≡ S0,n(g)

)
, given by (6), with

the best proposed bound shown in this article requiring the same conditions
on g, i.e., with the bound Sn,n(g).

Corollary 6. The variance bounds Sn,n(g) and Sn, given by (17) (for m = n)
and (6) respectively, are of the same type and require the same conditions on
g. Moreover, the bound Sn,n(g) is better than Sn. Specifically,

|Varg(X)−Sn| ≥
(

2n
n

)
∏

2n−1
j=n (1− jδ )

∏
n−1
j=0(1− jδ )

|Varg(X)−Sn,n(g)| .

The equality holds only in the trivial cases when Varg(X) = Sn,n(g) = Sn, i.e.,
the function g : J(X)→ R is a polynomial of degree at most n.[

Note that, since δ ≤ 0,
(2n

n

)
∏

2n−1
j=n (1− jδ )

/
∏

n−1
j=0(1− jδ )≥

(2n
n

)
.
]

Final Conclusion: The variance bounds given by Theorem 4, for appro-
priate choices of n and m, either provide existing univariate variance bounds
or improvements. Our bounds cover all usual cases, namely:

• Chernoff-type

[45, 14, 23, 18, 49, 55, 5],

• Poincaré-type

[51, 16, 33, 32, 7],

• Bessel-type

[15, 32, 7].
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Abstract. The Hardy constant of a simply connected domain Ω ⊂ R2 is the
best constant for the inequality∫

Ω

|∇u|2dx≥ c
∫

Ω

u2

dist(x,∂Ω)2 dx , u ∈C∞
c (Ω).

After the work of Ancona where the universal lower bound 1/16 was obtained,
there has been a substantial interest on computing or estimating the Hardy
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constant of planar domains. In this work we determine the Hardy constant of
an arbitrary quadrilateral in the plane. In particular we show that the Hardy
constant is the same as that of a certain infinite sectorial region which has
been studied by E.B. Davies.

1 Introduction

In the 1920’s Hardy established the following inequality [12]:∫
∞

0
u′(t)2dt ≥ 1

4

∫
∞

0

u2

t2 dt , for all u ∈C∞
c (0,∞). (1)

The constant 1/4 is the best possible, and equality is not attained for any non-
zero function in the appropriate Sobolev space.

Inequality (1) immediately implies the following inequality on RN
+=RN−1×

(0,+∞): ∫
RN
+

|∇u|2dx≥ 1
4

∫
RN
+

u2

x2
N

dx , for all u ∈C∞
c (RN

+), (2)

where again the constant 1/4 is the best possible. The analogue of (2) for a
domain Ω⊂ RN is∫

Ω

|∇u|2dx≥ 1
4

∫
Ω

u2

d2 dx , for all u ∈C∞
c (Ω), (3)

where d = d(x) = dist(x,∂Ω). However, (3) is not true without geometric
assumptions on Ω. The typical assumption made for the validity of (3) is that
Ω is convex [10]. A weaker geometric assumption introduced in [7] is that Ω

is weakly mean convex, that is

−∆d(x)≥ 0 , in Ω, (4)

where ∆d is to be understood in the distributional sense. Condition (4) is
equivalent to convexity when N = 2 but strictly weaker than convexity when
N ≥ 3 [4].

In the last years there has been a lot of activity on Hardy inequality and
improvements of it under the convexity or weak mean convexity assumption
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on Ω; see [8, 7, 13, 11]. If no geometric assumptions are imposed on Ω, then
one can still obtain inequalities of similar type. If for example Ω is bounded
with C2 boundary then one can still have inequality (3) for all u ∈ C∞

c (Ωε)
where Ωε = {x ∈ Ω : d(x) < ε}, provided ε > 0 is small enough [11]. In the
same spirit, under the same assumptions on Ω it was proved in [8] that there
exists λ ∈ R such that∫

Ω

|∇u|2dx+λ

∫
Ω

u2dx≥ 1
4

∫
Ω

u2

d2 dx , for all u ∈C∞
c (Ω). (5)

More generally, it is well known that for any bounded Lipschitz domain
Ω⊂ RN there exists c > 0 such that∫

Ω

|∇u|2dx≥ c
∫

Ω

u2

d2 dx , for all u ∈C∞
c (Ω). (6)

Following [9] we call the best constant c of inequality (6) the Hardy constant
of the domain Ω.

In two space dimensions Ancona [3] using Koebe’s 1/4 theorem discov-
ered the following remarkable result: for any simply connected domain Ω ⊂
R2 there holds ∫

Ω

|∇u|2dx≥ 1
16

∫
Ω

u2

d2 dx , for all u ∈C∞
c (Ω). (7)

This result is typical of two space dimensions: Davies [9] has proved that no
universal Hardy constant exists in dimension N ≥ 3.

From now on we concentrate on two space dimensions. Two questions
arise naturally, and have already been posed in the literature [14, 9, 10, 6, 15]:

(1) Given a simply connected domain Ω ⊂ R2 find (or obtain information
about) the Hardy constant of Ω.

(2) Find the best uniform Hardy constant valid for all simply connected do-
mains Ω ⊂ R2. Moreover, determine whether there are extremal do-
mains, that is domains Ω whose Hardy constant coincides with the best
uniform Hardy constant.
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Laptev and Sobolev [15] established a more refined version of Koebe’s
theorem and obtained a Hardy inequality which takes account of a quantitative
measure of non-convexity. In particular they proved that if any y ∈ ∂Ω is the
vertex of an infinite sector Λ of angle θ ∈ [π,2π] independent of y such that
Ω⊂ Λ, then the constant 1/16 of (7) can be replaced by π2/4θ 2. The convex
case corresponds to θ = π , in which case the theorem recovers the 1/4 in the
case of convexity. Analogous results were obtained recently in [2].

Davies [9] studied problem (1) in the case of an infinite sector of angle
β . He used the symmetry of the domain to reduce the computation of the
Hardy constant to the study of a certain ODE; see (13) below. In particular
he established the following two results, which are also valid for the circular
sector of angle β :

(a) The Hardy constant is 1/4 for all angles β ≤ βcr, where βcr ∼= 1.546π .
(b) For βcr ≤ β ≤ 2π the Hardy constant strictly decreases with β and in

the limiting case β = 2π the Hardy constant is ∼= 0.2054.
Our aim in this work is to answer questions (1) and (2) in the particular

case where Ω is a quadrilateral. Since the Hardy constant for any convex
domain is 1/4 we restrict our attention to non-convex quadrilaterals. In this
case there is exactly one non-convex angle β , π < β < 2π . As we will see,
this angle plays an important role and determines the Hardy constant. Our
result reads as follows:

Theorem. Let Ω be a non-convex quadrilateral with non-convex angle π <
β < 2π . Then

∫
Ω

|∇u|2dx≥ cβ

∫
Ω

u2

d2 dx , u ∈C∞
c (Ω), (8)

where cβ is the unique solution of the equation

√cβ tan
(√cβ (

β −π

2
)
)
= 2
(

Γ(
3+
√

1−4cβ

4 )

Γ(
1+
√

1−4cβ

4 )

)2

, (9)

when βcr ≤ β < 2π and cβ = 1/4 when π < β ≤ βcr. The constant cβ is the
best possible.
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As we shall see, the constant cβ is precisely the Hardy constant of the sec-
tor of angle β , so equation (9) provides an analytic description of the Hardy
constant computed in [9] numerically. From (9) we also deduce that the criti-
cal angle βcr in (b) is the unique solution in (π,2π) of the equation

tan
(βcr−π

4
)
= 4
(

Γ(3
4)

Γ(1
4)

)2

. (10)

Relation (10) was also obtained, amongst other interesting results, by Tidblom
in [17]. We also note that the constant c2π is the uniform Hardy constant for
the class of all quadrilaterals. The sharpness of the constant cβ follows from
the results of Davies [9].

An important ingredient in the proof of our theorem is the following ele-
mentary inequality valid on any domain U . Suppose ∂U = Γ∪ Γ̃. Then, under
certain assumptions, for any function φ > 0 on U ∪Γ we have∫

U
|∇u|2dx≥−

∫
U

∆φ

φ
u2dx+

∫
Γ

u2 ∇φ

φ
·~νdS (11)

for all smooth functions u which vanish near Γ̃. Inequality (11) will be ap-
plied to suitable subdomains Ui of Ω and for suitable choices of functions φ .
Roughly, each subdomain Ui consists of points whose nearest boundary point
belongs to a different part of ∂Ω. The contribution along the boundary ∂Ω is
zero because of the Dirichlet boundary conditions whereas there are non-zero
interior boundary contributions that have to be taken into account.

The structure of the paper is simple: in Section 2 we establish a number
of auxiliary results that are used in Section 3 where our theorem is proved.

2 Auxiliary estimates

Let β > π be fixed. We start by defining the potential V (θ), θ ∈ (0,β ),

V (θ) =


1

sin2
θ
, 0 < θ < π

2 ,

1, π

2 < θ < β − π

2 ,
1

sin2(β −θ)
, β − π

2 < θ < β .

(12)
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For c > 0 we consider the following boundary-value problem:{
−ψ ′′(θ) = cV (θ)ψ(θ), 0≤ θ ≤ β ,

ψ(0) = ψ(β ) = 0
(13)

It was proved in [9] that the largest positive constant c for which (13) has
a positive solution coincides with Hardy constant of the sector of angle β .
Due to the symmetry of the potential V (θ) this also coincides with the largest
constant c for which the following boundary value problem has a solution:{

−ψ ′′(θ) = cV (θ)ψ(θ), 0≤ θ ≤ β/2,

ψ(0) = ψ ′(β/2) = 0 .
(14)

Due to this symmetry, we shall identify the solutions of problems (13) and
(14).

The largest angle βcr for which the Hardy constant is 1/4 for β ∈ [π,βcr]
was computed numerically in [9] and analytically in [17] where (10) was es-
tablished; the approximate value is βcr ∼= 1.546π .

We first study the following algebraic equation

√
c tan

(√
c(

β −π

2
)
)
= 2
(

Γ(3+
√

1−4c
4 )

Γ(1+
√

1−4c
4 )

)2

. (15)

We note that choosing in (15) c = 1/4 we obtain βcr which is given by (10).

Lemma 1. For any β ≥ βcr there exists a unique c= cβ satisfying (15). More-
over the function β 7→ cβ is smooth and strictly decreasing for β ≥ βcr. In
particular we have

c2π < cβ <
1
4

for all βcr < β < 2π.

Note. From (15) we obtain the numerical estimate c2π
∼= 0.20536 of [9].

Proof. Setting x =
√

1−4c equation (15) takes the equivalent form

G(x,β ) :=
1
2
(1− x2)1/4 tan1/2 ((1− x2)1/2 β −π

4
)
−

Γ(3+x
4 )

Γ(1+x
4 )

= 0,
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where we are interested in the range 0≤ x < 1 and β is such that

(1− x2)1/2 β −π

4
<

π

2
.

For this range of x and β we can easily see that G(x,β ) is C∞. We will apply
the Implicit Function Theorem. We first note that G(0,βcr) = 0. Moreover a
simple but tedious computation gives

∂G
∂x

(x,β ) =− x(β −π)

16(1− x2)1/4

1+ tan2
(
(1− x2)1/2 β−π

4

)
tan1/2

(
(1− x2)1/2 β−π

4

)
− x

4(1− x2)3/4 tan1/2
(
(1− x2)1/2 β −π

4

)
−

Γ(3+x
4 )

4Γ(1+x
4 )

(
Γ′(3+x

4 )

Γ(3+x
4 )
−

Γ′(1+x
4 )

Γ(1+x
4 )

)
.

Since
d
dx

(Γ′(x)
Γ(x)

)
=

∞

∑
n=0

1
(x+n)2 > 0,

we conclude that ∂G/∂x < 0 for all (x,β ) with 0≤ x < 1 and

βcr ≤ β <
2π√
1− x2

+π.

We also easily see that ∂G/∂β > 0 in the above range of x, β . This implies
the existence and uniqueness locally near β = βcr. A standard argument then
gives the global existence of a smooth, strictly increasing function x = x(β )
for β ≥ βcr. The proof is concluding by substituting c = 1−x2

4 . 2

We next study the boundary value problem (14). The solution will be
expressed using the hypergeometric function

F(a,b,c;z) :=
Γ(c)

Γ(a)Γ(b)

∞

∑
n=0

Γ(a+n)Γ(b+n)
Γ(c+n)

zn

n!
.
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Lemma 2. Let β > βcr. The boundary value problem (14) has a positive
solution if and only if c solves (15). In this case the solution is given by

ψ(θ) =


√

2cos
(√

c(β −π)/2
)

sinα(θ/2)cos1−α(θ/2)

F(1
2 ,

1
2 ,α + 1

2 ; 1
2)

×

×F(1
2 ,

1
2 ,α + 1

2 ; sin2(θ

2 )), 0 < θ ≤ π

2 ,

cos
(√

c(β

2 −θ)
)
, π

2 < θ ≤ β

2 ,

where α is the largest solution of α(1−α) = c. Moreover ψ ∈ H1
0 (0,β ).

Proof. Clearly the function

ψ(θ) = cos(√cβ (
β

2
−θ)) ,

π

2
≤ θ ≤ β

2
.

is a positive solution of the differential equation in (π/2,β/2) and satisfies the
boundary condition ψ ′(β/2) = 0. For θ ∈ (0,π/2) we set ξ = sin2

θ/2 and
y(θ) = sinα(θ/2)cos1−α(θ/2)w(ξ ) and we obtain after some computations
that w(ξ ) solves the hypergeometric equation

ξ (1−ξ )wξ ξ +(2ξ +α− 3
2
)wξ +

1
4

w = 0 , 0 < ξ <
1
2
,

the general solution of which is described via hypergeometric functions F(α,
β ,γ,ξ ) and is well-defined for |ξ | < 1; see [16, 1] for details and various
properties of the hypergeometric functions. We thus conclude that the general
solution of the differential equation in (14) is

y(θ) = c1 sinα(
θ

2
)cos1−α(

θ

2
)F(

1
2
,
1
2
,α +

1
2

;sin2(
θ

2
))

+ c2 sin1−α(
θ

2
)cos1−α(

θ

2
)F(1−α,1−α,

3
2
−α; sin2(

θ

2
))

In order to maximize c we take c2 = 0. The matching conditions at θ = π/2
force c to satisfy equation (15) and determine c1. 2

Lemma 3. Let π < β ≤ βcr. The largest value of c so that the boundary value
problem (14) has a positive solution is c = 1/4. For β = βcr the solution is

ψ(θ) =


cos
(

βcr−π

4

)
sin1/2

θ

F(1
2 ,

1
2 ,1; 1

2)
F(

1
2
,
1
2
,1;sin2(

θ

2
)), 0 < θ ≤ π

2 ,

cos
(1

2(
βcr
2 −θ)

)
, π

2 < θ ≤ βcr
2 .
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Proof. Let c = 1/4. Working as in the proof of Lemma 2 we find that the
general solution of the differential equation (14) in (0,π/2) now is

y(θ) = c1 sin1/2(
θ

2
)cos1/2(

θ

2
)F(

1
2
,
1
2
,1;sin2(

θ

2
))

+ c2 sin1/2(
θ

2
)cos1/2(

θ

2
)F(

1
2
,
1
2
,1;sin2(

θ

2
))×

×
∫ 1/2

sin2(θ/2)

dt
t(1− t)F2(1

2 ,
1
2 ,1; t)

.

The matching conditions at θ = π/2 determine c1 and c2. In order for ψ to be
positive it is necessary that c2 ≥ 0. This turns out to be equivalent to

4
Γ2(3

4)

Γ2(1
4)
≥ tan(

β −π

4
).

This implies that β ≤ βcr and in the case β = βcr we have c2 = 0. 2

For our purposes it is useful to write the solution of (14) in case β ≥ βcr

as a power series

ψ(θ) = θ
α

∞

∑
n=0

anθ
n , (16)

where α is the largest solution of the equation α(1−α) = c in case β > βcr

and α = 1/2 when β = βcr. We normalize the power series setting a0 = 1;
simple computations then give

a1 = 0 , a2 =−
α(1−α)

6(1+2α)
. (17)

For our analysis it will be important to study the following two auxiliary
functions:

f (θ) =
ψ ′(θ)

ψ(θ)
, θ ∈ (0,β ) , (18)

and

g(θ) =
ψ ′(θ)

ψ(θ)
sinθ , θ ∈ (0,β ) , (19)
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where ψ is the normalized solution of (13) described in Lemmas 2 and 3. We
note that these functions depend on β . Simple computations show that they
respectively solve the differential equations

f ′(θ)+ f 2(θ)+ cV (θ) = 0 , 0 < θ < β (20)

and
g′(θ) =− 1

sinθ

[
g(θ)2− cosθ g(θ)+ c

]
, 0 < θ ≤ π/2, (21)

where c = cβ .

Lemma 4. Let π ≤ β ≤ 2π . The function g(θ) is monotone decreasing on
(0,π/2].

Proof. In the case where π ≤ β ≤ βcr we have c = 1/4 and therefore
monotonicity follows at once from (21). Suppose now that βcr ≤ β ≤ 2π .
Using the asymptotics (17) we obtain

g(θ) = α +(2a2−
α

6
)θ 2 +O(θ 3) , as θ → 0+ . (22)

Now, by (21) g(θ) is monotone decreasing in [θ0,π/2] where θ0 ∈ [0,π/2] is
determined by cos2 θ0 = 4c. Let ρ+(θ) denote the largest root of the equation
t2− cosθ t + c, 0 ≤ θ ≤ θ0. We note that g(0) = ρ+(0), g′(0) = 0 and (by
(22)) g′′(0) < 0. Hence there exists an non-empty interval (0,θ ∗) on which
g is strictly monotone decreasing and, therefore, g(θ) > ρ+(θ). To prove
that g is monotone decreasing on the whole [0,π/2], let us assume that it is
not. Then there exists a least positive θ1 such that g′(θ1) = 0. We then have
g(θ1) = ρ+(θ1). But (ρ+)′ < 0, hence g(θ)< ρ+(θ) for θ < θ1 close enough
to θ1. This contradicts the definition of θ1. 2

Lemma 5. Let π ≤ β ≤ 2π . For π/2 ≤ γ ≤ π let θ1 be the angle in [0,π/2]
determined by the relation

cotθ1 = sinγ. (23)

Then there holds

2+ cosγ

1+ sin2
γ

f (θ1)≥ f (
π

2
) ,

π

2
≤ γ ≤ π. (24)



90 years School of Mathematics A.U.Th. 33

Proof. We define

Q(γ) =
2+ cosγ

1+ sin2
γ

f (θ1).

We will establish that Q is a decreasing function in [π/2,π]. An easy calcula-
tion gives

Q′(γ) =
cosγ (2+ cosγ)

(1+ sin2
γ)2

[
f (θ1)

2− sinγ(cos2 γ +4cosγ +2)
cosγ(2+ cosγ)

f (θ1)

+ c(1+ sin2
γ)

]
,

where θ1 = θ1(γ), π/2≤ γ ≤ π .
We first consider the interval where −2+

√
2≤ cosγ ≤ 0. For such γ we

have cos2 γ +4cosγ +2≥ 0 and the result follows at once.
We next consider the case where−1≤ cosγ ≤−2+

√
2. The discriminant

∆ of the quadratic polynomial above is

∆ =
sin2

γ(cos2 γ +4cosγ +2)2−4ccos2 γ(1+ sin2
γ)(2+ cosγ)2

cos2 γ(2+ cosγ)2 .

However, since

d
dt
(t2−4t +2)2 = 4(t2−4t +2)(t−2)< 0 , 2−

√
2≤ t ≤ 1,

we conclude that (t2−4t +2)2 ≤ 1 for 2−
√

2≤ t ≤ 1 and therefore

∆≤ (1− cos2 γ)−4ccos2 γ(2− cos2 γ)(2+ cosγ)2

cos2 γ(2+ cosγ)2 ,

for−1≤ cosγ ≤−2+
√

2. Next we shall prove that (1−cos2 γ)−4ccos2 γ(2−
cos2 γ)(2+cosγ)2 ≤ 0 for −1≤ cosγ ≤−2+

√
2. For this we set t =−cosγ

and we define w(t) = 1− t2−4ct2(2− t2)(2− t)2, t > 0. We have

w′(t) =−2t
(

1+4c[−3t4 +10t3−4t2−12t +8]
)
.
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Now, the function p(t) =−3t4 +10t3−4t2−12t +8 has derivative

p′(t) = (t−1)(−12t2 +18t +10)−2≤ 0 , 0≤ t ≤ 1.

Therefore 1+ 4cp(t) ≥ 1+ 4cp(1) = 1− 4c ≥ 0 for 0 ≤ t ≤ 1. This in turn
implies that w(t) decreases in [0,1]. But

w(2−
√

2) = 4
√

2−5−64c(5
√

2−7)< 0,

since c> (4
√

2−5)/(64(5
√

2−7))≈ 0.1444. We thus conclude that w(t)≤ 0
for 2−

√
2≤ t ≤ 1, which in turn implies that ∆≤ 0 for−1≤ cosγ ≤−2+

√
2.

Therefore Q(γ) is decreasing also in this this interval. Since Q(π) = f (π/2),
the proof is complete. 2

Lemma 6. Let π ≤ β ≤ 2π and π/2 ≤ γ ≤ π . For θ ∈ [π/2,(3π/2)− γ]
denote by θ1 = θ1(θ) be the angle in [0,π/2] uniquely determined by the
relation

cotθ1 =−cos(θ + γ). (25)

Then there holds

f (θ1)≥ f (θ)
1+ cos2(θ + γ)

2+ sin(θ + γ)
,

π

2
≤ θ ≤ 3π

2
− γ . (26)

Proof. For θ = π/2 the corresponding value θ∗= θ1(π/2) is the one given
by (23) hence the result is a consequence of Lemma 5.

To prove (26) we shall consider θ1 as the free variable so that θ = θ(θ1) is
given by (25). Since f (θ1) satisfies f ′(θ1)+ f 2(θ1)+c/sin2

θ1 = 0, it suffices
to show that the function

h(θ1) := f (θ)
1+ cos2(θ + γ)

2+ sin(θ + γ)
(θ = θ(θ1))

satisfies

H(θ1) := h′(θ1)+h2(θ1)+
c

sin2
θ1
≤ 0 , θ∗ ≤ θ1 ≤

π

2
, (27)

where θ∗ ∈ (0,π/2) is determined by cotθ∗ = sinγ .
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We express H(θ1) in terms of f (θ) and f ′(θ); we also use the fact that,
by (25),

dθ1

dθ
=− sin(θ + γ)

1+ cos2(θ + γ)
.

Using (20) and setting ω = θ + γ we obtain after some simple computations
that

H(θ1) =
1+ cos2 ω

sinω(2+ sinω)2

[
2(1+ cos2

ω)(1+ sinω) f 2(θ)+ (28)

+ cosω(sin2
ω +4sinω +2) f (θ)+2c(1+ sinω)(2+ sinω)

]
.

In brackets we have a quadratic polynomial of f (θ) whose discriminant is
itself a polynomial P(t) of t =−sinω ∈ [−cosγ,1]⊆ [0,1],

P(t) = (1− t)×
× [t5 +(16c−7)t4 +12(1−4c)t3 +4t2 +12(8c−1)t +4(1−16c)]

=: (1− t)Q(t).

We observe that Q(0)< 0 and Q(1) = 2 > 0; moreover

Q′(t) = 5t4 +4(16c−7)t3 +36(1−4c)t2 +8t +12(8c−1). (29)

Recall that 1/8 < c ≤ 1/4, hence all the summands in (29) are non-negative
in [0,1] with the exception of 4(16c− 7). Since |4(16c− 7)| = 28− 64c <
36(1−4c)+8+12(8c−1), we conclude that Q′ > 0 in [0,1].

The above considerations imply that there exists a unique t0 ∈ (0,1) such
that P(t) < 0 in (0, t0) and P(t) > 0 in (t0,1). This immediately implies that
H(θ1)≤ 0 in the range 0 < t < t0.

For t0 < t < 1 the quadratic polynomial in (28) has two roots of the same
sign as the sign of t2− 4t + 2. The equation t2− 4t + 2 = 0 has solutions
2±
√

2. It follows that the quadratic polynomial above has negative two roots
when max{t0,2−

√
2} < t < 1. Since f (θ) > 0, 0 < θ < β/2, we conclude

once again that H(θ1) ≤ 0 in this case as well. But we easily check that
Q(2−

√
2)< 0, which implies that max{t0,2−

√
2}= t0. This completes the

proof. 2
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Lemma 7. Let π ≤ β ≤ 2π . The following inequalities hold:

(i)If 0≤ ω ≤ π/4, then

f (θ)sinθ cos(θ +ω)+α cosω ≥, 0≤ θ ≤ π

2
,

(ii)If 3π/2−β ≤ ω ≤ 2π−β , then

f (θ)cos(θ +ω)+α[1+ sin(θ +ω)]≥ 0,
π

2
≤ θ ≤ β − π

2
,

(iii)If 0≤ ω ≤ 2π−β , then

− f (θ)cos(θ +ω)+α[1− sin(θ +ω)]≥ 0,
π

2
≤ θ ≤ β − π

2
.

Proof. (i) The inequality is trivially true for 0 ≤ θ ≤ π/2−ω , so we
restrict our attention to the interval π/2−ω ≤ θ ≤ π/2. We must prove that

f (θ)≤ F(θ) ,
π

2
−ω ≤ θ ≤ π

2
, (30)

where f is given by (18) and

F(θ) =−α
cosω

sinθ cos(θ +ω)
.

Using the fact that
√

c≤ α we have

F(
π

2
)− f (

π

2
) = α cotω−

√
c tan[

√
c(

β

2
− π

2
)]

≥ α

{
cotω− tan[

√
c(

β

2
− π

2
)]
}

=
α

sinω cos[
√

c(β

2 −
π

2 )]
cos
(√

c(
β

2
− π

2
)+ω

)
≥ 0, (31)

since 0 <
√

c(β

2 −
π

2 )+ω ≤ β

4 −
π

4 +ω ≤ π/2.
We shall prove that F ′(θ)+F(θ)2 + c

sin2
θ
≤ 0 in [π/2−ω,π/2]. This,

combined with (20) and (31) will imply that f (θ)≤ F(θ) in [π/2−ω,π/2].
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Recalling that c = α(1−α), we have for θ ∈ [π/2−ω,π/2],

F ′(θ)+F2(θ)+
c

sin2
θ

=
α cosω cosθ

sin2
θ cos(θ +ω)

− α cosω sin(θ +ω)

sinθ cos2(θ +ω)
+

α2 cos2 ω

sin2
θ cos2(θ +ω)

+
c

sin2
θ

= α
cosω cosθ cos(θ +ω)− cosω sin(θ +ω)sinθ

sin2
θ cos2(θ +ω)

+

+α
α cos2 ω +(1−α)cos2(θ +ω)

sin2
θ cos2(θ +ω)

= α
2cosω cosθ cos(θ +ω)− (1−α)[cos2 ω− cos2(θ +ω)]

sin2
θ cos2(θ +ω)

= α
2cosω cosθ cos(θ +ω)− (1−α)sinθ sin(θ +2ω)

sin2
θ cos2(θ +ω)

≤ 0,

since the last term is the sum of two non-positive terms. Hence (i) has been
proved.

(ii) We first note that

f (θ) =
√

c tan
(√

c(
β

2
−θ)

)
,

π

2
≤ θ ≤ β − π

2
,

and

−π

4
≤
√

c(
β

2
−θ)≤ π

4
,

π

2
≤ θ ≤ β − π

2
.

It follows that the required inequality is written equivalently,

α(1+ sin(ω +θ))cos(
√

c(
β

2
−θ))+

√
csin(

√
c(

β

2
−θ))cos(ω +θ)≥ 0 ,
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π

2 ≤ θ ≤ β − π

2 . Hence, since α ≥
√

c,

α(1+ sin(θ +ω))cos(
√

c(
β

2
−θ))+

√
csin(

√
c(

β

2
−θ))cos(θ +ω)

≥
√

c
{
(1+ sin(θ +ω))cos(

√
c(

β

2
−θ))+ sin(

√
c(

β

2
−θ))cos(θ +ω)

}
=
√

c
{

cos(
√

c(
β

2
−θ))+ sin[

√
c(

β

2
−θ)+θ +ω]

}
=
√

c
{

cos(
√

c(
β

2
−θ))− cos[

π

2
+
√

c(
β

2
−θ)+θ +ω]

}
.

= 2
√

csin
[√

c(
β

2
−θ)+

π

4
+

θ

2
+

ω

2

]
sin(

π

4
+

θ

2
+

ω

2
). (32)

But for the given range of ω and θ we have

0≤ π

4
+

θ

2
+

ω

2
≤ π and 0≤

√
c(

β

2
−θ)+

π

4
+

θ

2
+

ω

2
≤ π.

Hence the last quantity in (32) is non-negative.
(iii) We have cos(θ +ω)≤ 0 for π

2 ≤ θ ≤ β − π

2 , therefore the inequality
is trivial for θ ∈ [π/2,β/2] (since f ≥ 0 there). We now consider the comple-
mentary interval β/2≤ θ ≤ β −π/2. Arguing as in (32) above we see that it
suffices to prove that

−sin(
√

c(
β

2
−θ))cos(θ +ω)+ [1− sin(θ +ω)]cos(

√
c(

β

2
−θ))≥ 0,

or equivalently,

cos
(√

c(θ − β

2
)
)
≥ sin

(√
c(

β

2
−θ)+θ +ω

)
,

β

2
≤ θ ≤ β − π

2
. (33)

We have

cos
(√

c(θ − β

2
)
)
− sin

(√
c(

β

2
−θ)+θ +ω

)
=

−2sin
(π

4
− θ +ω

2
)

sin
(√

c(
β

2
−θ)+

θ +ω

2
− π

4
)
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Since β +ω ≤ 2π , we have

0≤ θ

2
+

ω

2
− π

4
≤ π

2

and

0≤
√

c(
β

2
−θ)+

θ +ω

2
− π

4
≤−
√

c(β −π)

2
+

β +ω

2
≤ π

2
,

hence (33) is true. 2

3 Proof of the Theorem

In this section we will give the proof of our Theorem. We start with a lemma
that plays fundamental role in our argument and will be used repeatedly. We
do try to obtain the most general statement and for simplicity we restrict our-
selves to assumptions that are sufficient for our purposes.

Let U be a domain and assume that ∂U = Γ∪ Γ̃ where Γ is Lipschitz
continuous. We denote by~ν the exterior unit normal on Γ.

Lemma 8. Let φ ∈ H1
loc(U) be a positive function such that ∇φ/φ ∈ L2(U)

and ∇φ/φ has an L1 trace on Γ in the sense that v∇φ/φ has an L1 trace on
∂U for every v ∈C∞(U) that vanishes near Γ̃. Then∫

U
|∇u|2dxdy≥−

∫
U

∆φ

φ
u2dxdy+

∫
Γ

∇φ

φ
·~νu2dS (34)

for all smooth functions u which vanish near Γ̃ and ∆φ is understood in the
weak sense.
If in particular there exists c ∈ R such that

−∆φ ≥ c
d2 φ , (35)

in the weak sense in U, where d = dist(x, Γ̃), then∫
U
|∇u|2dxdy≥ c

∫
U

u2

d2 dxdy+
∫

Γ

u2 ∇φ

φ
·~νdS (36)

for all functions u ∈C∞(U) that vanish near Γ̃.
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Proof. Let u be a function in C∞(U) that vanishes near Γ̃. We denote
~T =−∇φ/φ . Then∫

U
u2div~T dxdy = −2

∫
U

u∇u ·~T dxdy+
∫

Γ

u2~T ·~ν dS

≤
∫

U
|~T |2u2dxdy+

∫
U
|∇u|2dxdy+

∫
Γ

u2~T ·~ν dS ,

that is ∫
U
|∇u|2dxdy≥

∫
U
(div~T −|~T |2)u2dxdy−

∫
Γ

~T ·~νu2dS .

Using assumption (35) we obtain (36). 2
Let us now consider a non-convex quadrilateral Ω, with vertices O, A, B

and C (as in the diagrams) and corresponding angles β , γ , δ and ζ . We assume
that the non-convex vertex is O and, is located at the origin, and that the side
OA lies along the positive x-axis and has length one.

Our argument depends fundamentally on two geometric features of the
quadrilateral Ω. While in all cases the methodology remains the same, the
technical details are different. The first feature is whether or not one of the
angles adjacent to the non-convex one is larger than π/2. The second one is
related to the structure of the equidistance curve

Γ = {P ∈Ω : dist(P,OA∪OC) = dist(P,AB∪BC)}.

Clearly the curve Γ consists of line and parabola segments. Taking also ac-
count of symmetries, each non-convex quadrilateral Ω fits within one of the
following five types, each one of which will be dealt with separately:

(a) Type A1 (b) Type A2
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Type A1. We have γ ≤ π/2, ζ ≤ π/2 and the curve Γ consists of two line
and two parabola segments (Here we also include the special case where Γ

consists of two line segments and one parabola segment.)
Type A2. We have γ ≤ π/2, ζ ≤ π/2 and the curve Γ consists of three

line segments and one parabola segment.

(a) Type B1 (b) Type B2

Type B1. γ > π/2 and the curve Γ consists of two line segments and two
parabola segments. (Here we also include the special case where Γ consists
of two line segments segments and one parabola segment.)

Type B2. γ > π/2 and the curve Γ consists of three line and one parabola
segment: starting from the point A we first have two line segments, then a
parabola segment and then a last line segment.

(a) Type B3

Type B3. γ > π/2 and the curve Γ consists again of three line and one
parabola segment: starting from the point A we first have a line segment, then



42
G. Barbatis and A. Tertikas, On the Hardy constant of non-convex planar domains:

the case of the quadrilateral

a parabola segment and then two more line segments.
In all cases the curve Γ divides Ω into two parts Ω− and Ω+ where points

in Ω− have nearest boundary point on OA∪OC and points on Ω+ have nearest
boundary points on AB∪BC. We denote by~ν the unit normal along Γ which is
outward with respect to Ω−. We also denote by S the point where Γ intersects
the bisector at the vertex B.

We shall often make use of the following simple fact: let P be the parabola
determined by the origin and the line xsinα+ycosα+ l = 0, where l > 0. The
exterior (with respect to the convex component) unit normal along ∂P is given
in polar coordinates by

~ν =
(cosθ − sinα,sinθ − cosα)√

2−2sin(θ +α)
. (37)

Proof of Theorem: type A1. We parametrize Γ by the polar angle θ ∈
[0,β ]. For θ ∈ [0,π/2] Γ is a straight line; the same is true for θ ∈ [β −
π/2,β ]. Finally, for θ ∈ [π/2,β−π/2] Γ consists of segments of two parabo-
las. These parabolas meet at the point S which is equidistant from AB, BC and
the origin. Let θ0 be the polar angle of S. We assume without loss of generality
that θ0 ≤ β/2. Hence Γ consists of four segments which when parametrized
by the polar angle θ are described as

Γ1 = {0≤ θ ≤ π/2}, Γ2 = {π/2≤ θ ≤ θ0},

Γ3 = {θ0 ≤ θ ≤ β − π

2
},Γ4 = {β −

π

2
≤ θ ≤ β}.

We shall apply Lemma 8 with U = Ω−, Γ̃ = OA∪OC and φ(x,y) = ψ(θ),
where ψ(θ) is the solution of (13) described in Lemmas 2 and 3. An easy
computation shows that

−∆ψ =
c

d2 ψ .

We thus obtain that∫
Ω−
|∇u|2dxdy≥ c

∫
Ω−

u2

d2 dxdy+
∫

Γ

∇φ

φ
·~νu2dS , u ∈C∞

c (Ω). (38)

We next apply Lemma 8 for the function φ1(x,y) = d(x,y)α (we recall that
α is the largest solution of α(1−α) = c). We note that in Ω+ the function
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d(x,y) coincides with the distance from AB∪BC and this implies that

−∆dα ≥ α(1−α)
dα

d2 , on Ω+ .

(The difference of the two functions above is a positive mass concentrated on
the bisector of the angle B). Applying Lemma 8 we obtain that∫

Ω+

|∇u|2dxdy ≥ c
∫

Ω+

u2

d2 dxdy−
∫

Γ

α∇d
d
·~ν u2dS , u ∈C∞

c (Ω).(39)

Adding (38) and (39) we conclude that∫
Ω

|∇u|2dxdy≥ c
∫

Ω

u2

d2 dxdy+
∫

Γ

(
∇φ

φ
−α

∇d
d

)
·~ν u2dS , u ∈C∞

c (Ω).

(40)
We emphasize that in the last integral the values of ∇φ/φ are obtained as
limits from Ω− while those of ∇d/d are obtained as limits from Ω+.

It remains to prove that the line integral in (40) is non-negative. For this
we shall consider the different segments of Γ.

(i) The segment Γ1 (0≤ θ ≤ π/2). Simple calculations give

∇φ

φ
=

1
r

ψ ′(θ)

ψ(θ)
(−sinθ ,cosθ) , in Ω− . (41)

The line AB has equation y+(x−1) tanγ = 0, so d(x,y)= (1−x)sinγ−ycosγ

on {P ∈Ω : d(P) = dist(P,AB)} and therefore

α
∇d
d

=−α
(sinγ,cosγ)

d
, on Γ1∪Γ2. (42)

Since~ν = (sin(γ/2),cos(γ/2)) along Γ1, (41) and (42) yield(
∇φ

φ
−α

∇d
d

)
·~ν =

1
r

ψ ′(θ)

ψ(θ)
cos(θ +

γ

2
)+

α cos(γ/2)
d

, on Γ1 .

However d(x,y) = y = r sinθ on Γ1, so we conclude by (i) of Lemma 7 (with
ω = γ/2) that(

∇φ

φ
−α

∇d
d

)
·~ν =

1
r sinθ

(
g(θ)cos(θ +

γ

2
)+α cos(γ/2)

)
≥ 0, on Γ1 .

(43)
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(ii) The segment Γ2 (π/2 ≤ θ ≤ θ0). This is (part of) the parabola deter-
mined by the origin and the side AB. Applying (37) we obtain that the outward
(with respect to Ω−) unit normal along Γ2 is

~ν =
(cosθ + sinγ,sinθ + cosγ)√

2+2sin(θ + γ)
. (44)

Combining (41), (42), (44) and (ii) of Lemma 7 (with ω = γ) we obtain(
∇φ

φ
−α

∇d
d

)
·~ν

=
1

r
√

2+2sin(θ + γ)

(
ψ ′(θ)

ψ(θ)
cos(θ + γ)+α[1+ sin(θ + γ)]

)
≥ 0, on Γ2.

(45)

(iii) The segment Γ3 (θ0 ≤ θ ≤ β −π/2). This is (part of) the parabola deter-
mined by the origin and the side BC. Now, the line BC has equation

(x+T )sin(γ +δ )+ ycos(γ +δ ) = 0 ,

where (−T,0) is the point where the side BC intersects the x-axis. Applying
(37) we thus obtain that the outward unit normal is

~ν =
(cosθ − sin(γ +δ ),sinθ − cos(γ +δ ))√

2−2sin(θ + γ +δ )
.

Hence, by (iii) of Lemma 7 (with ω = γ +δ ),(
∇φ

φ
−α

∇d
d

)
·~ν

=
1

r
√

2−2sin(θ + γ)

(
− ψ ′(θ)

ψ(θ)
cos(θ + γ +δ )+

+α[1− sin(θ + γ +δ )]
)
≥ 0, on Γ3. (46)

(iv) The segment Γ4 (β −π/2 ≤ θ ≤ β ). Replacing θ by β − θ , γ by 2π −
β − γ−δ (the angle at C) and using the relation ψ(θ) = ψ(β −θ), the com-
putations become identical to those for the segment Γ1; hence we obtain(

∇φ

φ
−α

∇d
d

)
·~ν ≥ 0 , on Γ4 . (47)
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The proof of the theorem is completed by combining (40), (43), (45), (46) and
(47). 2

Proof of Theorem: type A2. In this case the curve Γ consists of three line
segments and one parabola segment. Without loss of generality we assume
that starting from θ = 0 we first meet two line segments, then the parabola
segment and then the last line segment. Then the first two line segments meet
at the point S with polar angle θ0 ≤ π/2 and the four components of Γ are

Γ1 = {0≤ θ ≤ θ0}, Γ2 = {θ0 ≤ θ ≤ π

2
},

Γ3 = {
π

2
≤ θ ≤ β − π

2
}, Γ4 = {β −

π

2
≤ θ ≤ β}.

As in the case A1, we apply Lemma 8 on Ω− and Ω+ with the functions
φ(x,y) = ψ(θ) and φ1(x,y) = d(x,y)α respectively. We arrive at an inequality
similar to (40) and we conclude that the result will follow once we prove that(

∇φ

φ
−α

∇d
d

)
·~ν ≥ 0 , on Γ . (48)

The computations along the segments Γ1, Γ3 and Γ4 are identical to those
for the type A1 considered above and are omitted.

For Γ2 we consider the point (−T,0), T > 0, where the side BC intersects
the x-axis. The distance from the line BC is (x+T )sin(γ +δ )+ ycos(γ +δ ),
therefore ∇d = (sin(γ + δ ),cos(γ + δ )) on Γ2. Moreover along Γ2 we have
~ν = (−cos((γ +δ )/2),sin((γ +δ )/2)). We also note on Γ2 we have d(x,y) =
y = r sinθ . Combining the above we obtain that(

∇φ

φ
−α

∇d
d

)
·~ν =

1
r sinθ

[
g(θ)sin

(
θ +

γ +δ

2
)
+α sin(

γ +δ

2
)
]
, on Γ2,

which is non-negative for θ ∈ [0,π/2] since γ +δ ≤ π . 2

We next consider the cases where one of the two angles that are adjacent
to the non-convex angle exceeds π/2. Without loss of generality we assume
that γ ≥ π/2 (the angle at the vertex A). We note that since βcr > 3π/2, in this
case we have π ≤ β ≤ βcr hence the Hardy constant is c = 1/4.

We now divide Ω+ in two parts, ΩA
+ and ΩC

+, the parts of Ω+ with nearest
boundary points on AB and BC respectively. We denote by Γ∗ the common



46
G. Barbatis and A. Tertikas, On the Hardy constant of non-convex planar domains:

the case of the quadrilateral

boundary of ΩA
+ and ΩC

+, that is the line segment SB. We also denote by ~ν∗
the normal unit vector along Γ∗ which is outward with respect to ΩA

+.

Proof of Theorem: type B1. As in the case A1, the curve Γ is made up of
four segments,

Γ1 = {0≤ θ ≤ π/2}, Γ2 = {π/2≤ θ ≤ θ0},

Γ3 = {θ0 ≤ θ ≤ β − π

2
},Γ4 = {β −

π

2
≤ θ ≤ β},

where θ0 is the polar angle of the point S. We use again Lemma 8. On Ω− we
use the function φ(x,y) = ψ(θ), exactly as in types A1 and A2 and we obtain
that

∫
Ω−
|∇u|2dxdy≥ 1

4

∫
Ω−

u2

d2 dxdy+
∫

Γ

∇φ

φ
·~νu2dS , u ∈C∞

c (Ω). (49)

On ΩC
+ again we work as in types A1 and A2: we use the function φ(x,y) =

d(x,y)1/2 and we obtain

∫
ΩC

+

|∇u|2dxdy≥ 1
4

∫
ΩR

+

u2

d2 dxdy− 1
2

∫
Γ3∪Γ4

∇d
d
·~νu2dS−

− 1
2

∫
Γ∗

∇d
d
·~ν∗u2dS, u ∈C∞

c (Ω). (50)

Concerning ΩA
+, we cannot use the test function φ = d1/2 since part (i) of

Lemma 7 is not valid for the full range π/4 < ω < π/2. So we construct a
different function φ . To do this we consider a second orthonormal coordinate
system with cartesian coordinates denoted by (x1,y1) and polar coordinates
denoted by (r1,θ1). The origin O1 of this system is located on the extension
of the side AB from A and at distance −cosγ from A, and the axes are chosen
so that the point A has cartesian coordinates (−cosγ,0) with respect to the
new system. We note that this choice is such that

the point on Γ1 for which θ = π

2 −
γ

2 satisfies also θ1 =
π

2 −
γ

2 . (51)
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We apply Lemma 8 on ΩA
+ with the function φ1(x,y) = ψ(θ1). This func-

tion clearly satisfies −∆φ1 ≥ 1
4 d−2φ1, hence we obtain

∫
ΩA

+

|∇u|2dxdy≥ 1
4

∫
ΩA

+

u2

d2 dxdy−
∫

Γ1∪Γ2

(
∇φ1

φ1
·~ν)u2 dS+ (52)

+
∫

Γ∗
(
∇φ1

φ1
·~ν∗)u2 dS u ∈C∞

c (Ω). (53)

Adding (49), (50) and (53) we conclude that∫
Ω

|∇u|2dxdy≥ 1
4

∫
Ω

u2

d2 dxdy+
∫

Γ1∪Γ2

(
∇φ

φ
− ∇φ1

φ1

)
·~ν u2dS

+
∫

Γ3∪Γ4

(
∇φ

φ
− ∇d

2d

)
·~ν u2dS+

∫
Γ∗

(
∇φ1

φ1
− ∇d

2d

)
·~ν∗ u2dS(54)

for any u ∈ C∞
c (Ω). So it remains to prove that the three line integrals in

(54) are non-negative. For this we shall separately consider the different the
segments Γ1, Γ2, Γ3 and Γ4 and the segment Γ∗.

(i) The segment Γ1 (0≤ θ ≤ π/2). We have

∇φ

φ
·~ν =

ψ ′(θ)

rψ(θ)
cos(θ +

γ

2
) , on Γ1.

and similarly

∇φ1

φ1
·~ν =− ψ ′(θ1)

r1ψ(θ1)
cos(θ1−

γ

2
) , on Γ1.

However we have r1 sinθ1 = r sinθ along Γ1, so recalling definition (19) we
see that it is enough to prove the inequality

g(θ)cos(θ +
γ

2
)+g(θ1)cos(θ1−

γ

2
)≥ 0 , on Γ1 . (55)

Recalling (51) and applying the sine law we obtain that along Γ1 the polar
angles θ and θ1 are related by

cotθ1 =−cosγ cotθ + sinγ . (56)
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Claim. There holds
θ1 ≥ θ + γ−π, on Γ1 . (57)

Proof of Claim. We fix θ ∈ [0,π/2] and the corresponding θ1 = θ1(θ). If
θ + γ−π ≤ 0, then (57) is obviously true, so we assume that θ + γ−π ≥ 0.
Since 0 ≤ θ + γ − π ≤ π/2 and 0 ≤ θ1 ≤ π/2, (57) is written equivalently
cotθ1 ≤ cot(θ + γ − π); thus, recalling (56), we conclude that to prove the
claim it is enough to show that

−cosγ cotθ + sinγ ≤ cot(θ + γ), π− γ ≤ θ ≤ π

2
,

or, equivalently (since π ≤ θ + γ ≤ 3π/2),

−cosγ cot2 θ +(−cosγ cotγ− cotγ + sinγ)cotθ+

+1+ cosγ ≥ 0, π− γ ≤ θ ≤ π

2
. (58)

The left-hand side of (58) is an increasing function of cotθ and therefore takes
its least value at cotθ = 0. Hence the claim is proved.

For 0 ≤ θ ≤ π/2− γ/2 (55) is true since all terms in the left-hand side
are non-negative. So let π/2− γ/2≤ θ ≤ π/2 and θ1 = θ1(θ). From (56) we
find that

dθ1

dθ
−1 =−cosγ(1+ cot2 θ)+1+ cot2 θ1

1+ cot2 θ1

=−1+ sin2
γ + cosγ−2sinγ cosγ cotθ + cosγ(1+ cosγ)cot2 θ

1+ cot2 θ1
.

The function

h(x) := 1+ sin2
γ + cosγ−2sinγ cosγx+ cosγ(1+ cosγ)x2

is a concave function of x. We will establish the positivity of h(cotθ) for
π/2− γ/2 ≤ θ ≤ π/2. For this it is enough to establish the positivity at the
endpoints. At θ = π/2 positivity is obvious, whereas

h(tan(
γ

2
)) = 1+ sin2

γ + cosγ−2cosγ sin2 γ

2
≥ 0.
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From (51) we conclude that θ1 ≤ θ for π/2− γ/2≤ θ ≤ π/2.
We next apply Lemma 4. We obtain that for π/2− γ/2≤ θ ≤ π/2,

g(θ)cos(θ +
γ

2
)+g(θ1)cos(θ1−

γ

2
)≥ g(θ)[cos(θ +

γ

2
)+ cos(θ1−

γ

2
)]

= 2g(θ)cos(
θ +θ1

2
)cos(

θ −θ1 + γ

2
)

≥ 0,

where for the last inequality we made use of the claim. Hence (55) has been
proved.

(ii) The segment Γ2 ( π

2 ≤ θ ≤ θ0). Computations similar to those that led
to (45) together with the fact that r = r1 sinθ1 on Γ2 give that along Γ2 we
have(

∇φ

φ
− ∇φ1

φ1

)
·~ν (59)

=
1√

2+2sin(θ + γ)

[ f (θ)
r

cos(θ + γ)− f (θ1)

r1
[sin(θ1−θ − γ)− cosθ1]

]
= 1

r
√

2+2sin(θ+γ)

[
f (θ)cos(θ + γ)− f (θ1)sinθ1[sin(θ1−θ − γ)− cosθ1]

]
.

Now, simple geometry shows that along Γ2 the angles θ and θ1 are related by

cotθ1 =−cos(θ + γ). (60)

It follows that

sinθ1[sin(θ1−θ − γ)− cosθ1] =
cos(θ + γ)[2+ sin(θ + γ)]

1+ cos2(θ + γ)
, along Γ2 .

Since cos(θ +γ)≤ 0, (60) and Lemma 6 imply that (∇φ/φ−∇φ1/φ1) ·~ν ≥ 0
along Γ2, as required.

(iii) The segments Γ3 and Γ4 (θ0 ≤ θ ≤ β ). Since ζ < π/2, the change
θ ↔ β −θ reduces this case to that of the segments Γ2 and Γ1 respectively for
a quadrilateral of type A1, already considered above.

(iv) The segment Γ∗. The contribution from ΩA
+ is

∇φ1

φ1
·~ν∗ =

f (θ1)

r1
cos(θ1 +

δ

2
)≥ 0 , on Γ∗,
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since θ1 ≤ γ/2, by construction of the new coordinate system and γ +δ < π .
Given that the contribution from ΩC

+ is positive, the proof is complete.

Proof of Theorem: type B2. As in the case of type A2, there exists an
angle θ0 ≤ π/2 such that the four segments of Γ are

Γ1 = {0≤ θ ≤ θ0}, Γ2 = {θ0 ≤ θ ≤ π

2
},

Γ3 = {
π

2
≤ θ ≤ β − π

2
}, Γ4 = {β −

π

2
≤ θ ≤ β}.

So Γ3 is a parabola segment while Γ1, Γ2 and Γ4 are line segments. We define
the sets ΩA

+, ΩC
+ and the vector~ν∗ as in the case of type B1 and apply Lemma

8 with the same functions, that is ψ(θ) on Ω−, d(x,y)1/2 on ΩC
+ and ψ(θ1)

on ΩA
+ (where we use exactly the some construction for the coordinate system

(x1,y1)).
The computations along Γ1, Γ3 and Γ4 are identical to those for the type

B1 and are omitted. On Γ2 we have, as in the case of subtype A2,(
∇φ

φ
−α

∇d
d

)
·~ν =

1
r sinθ

[
g(θ)sin

(
θ +

γ +δ

2
)
+

1
2

sin(
γ +δ

2
)
]
≥ 0 ,

since γ +δ ≤ π . Finally, the computations along Γ∗ are identical to the corre-
sponding computations for the case B1. This completes the proof.

Proof of Theorem: Type B3. In this case there exist angles θ0,θ
′
0 with

π

2
≤ θ0 < θ

′
0 ≤ β − π

2

such that the four segments of Γ are

Γ1 = {0≤ θ ≤ π

2
}, Γ2 = {

π

2
≤ θ ≤ θ0},

Γ3 = {θ0 ≤ θ ≤ θ
′
0}, Γ4 = {θ ′0 ≤ θ ≤ β}.

So Γ2 is a parabola segment while Γ1, Γ3 and Γ4 are line segments. To pro-
ceed, we define the sets ΩA

+, ΩC
+ and the vector ~ν∗ as in the cases B1 and B2

and apply Lemma 8 with the same functions, that is ψ(θ) on Ω−, d(x,y)1/2
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on ΩC
+ and ψ(θ1) on ΩA

+, where again we use exactly the some construction
for the coordinate system (x1,y1).

The computations for the line segments Γ1 and Γ4 and for the parabola
segment Γ2 are identical to those for a quadrilateral of type B1 and are omitted.
We next consider the line segment Γ3 whose points are equidistant from the
sides AB and OC. Calculations similar to those above give that(

∇φ

φ
− ∇φ1

φ1

)
·~ν =

1
r sinθ

[
g(θ)sin

(β − γ

2
−θ
)

+g(θ1)sin(
β + γ

2
−θ1)

]
, on Γ3.

Now, it follows by construction that

θ ≥ π

2
≥ β + γ−π

2
≥ θ1, on Γ3.

Since 0 < (β + γ)/2−θ1 < π , by the monotonicity of g we have(
∇φ

φ
− ∇φ1

φ1

)
·~ν ≥ g(θ)

r sinθ

[
sin
(β − γ

2
−θ
)
+ sin(

β + γ

2
−θ1)

]
=

2g(θ)
r sinθ

sin
(β −θ −θ1

2
)

cos
(γ +θ −θ1

2
)
.

Since 0 < β − θ − θ1 < 2π , the last sine is positive. It is also clear that γ +
θ −θ1 > 0. Hence the proof will be complete if we establish the following

Claim: There holds

θ1 ≥ θ + γ−π, on Γ3. (61)

Proof of Claim. Simple geometry shows that along Γ3 the polar angles θ and
θ1 are related by

cotθ1 =−cos(β + γ)cot(β −θ)− sin(β + γ) .

and [θ0,θ
′
0]⊂ [π/2,β −π/2]⊂ [π/2,(β − γ +π)/2]. We will actually estab-

lish (61) for the larger range π/2≤ θ(β − γ +π)/2.
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For this, we initially observe that for θ = (β − γ +π)/2 inequality (61)
holds as an equality. Therefore the claim will be proved if we establish that

dθ1

dθ
−1≤ 0 ,

π

2
≤ θ ≤ β − γ +π

2
.

However, we easily come up to

dθ1

dθ
−1 =− cos(β + γ)(cos(β + γ)−1)cot2(β −θ)

1+ cot2 θ1

− 2sin(β + γ)cos(β + γ)cot(β −θ)

1+ cot2 θ1

− 1+ sin2(β + γ)− cos(β + γ)

1+ cot2 θ1
.

The function

h(x) : = cos(β + γ)(cos(β + γ)−1)x2 +2sin(β + γ)cos(β + γ)x

+1+ sin2(β + γ)− cos(β + γ)

is a concave function of x. We will establish the positivity of h(cot(β −θ)),
π/2 ≤ θ ≤ (β − γ +π)/2, and for this it is enough to establish positivity at
the endpoints. A simple computation shows that

h(cot(β − β − γ +π

2
)) = 2tan2(

β + γ

2
).

At the other endpoint we have

h(cot(β − π

2
)) = cos(β + γ)(cos(β + γ)−1) tan2

β−

−2sin(β + γ)cos(β + γ) tanβ +1+ sin2(β + γ)− cos(β + γ)

=
2sin2(β+γ

2 )

cos2 β

[
1+ cos(2β )cos2(

β + γ

2
)
]

− sin(β + γ)

2cos2 β

(
sin(β − γ)+ sin(2β )cos(β + γ)

)
≥ 0,
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since 3π/2≤ β + γ ≤ 2π and 0≤ β − γ ≤ π . Hence the claim is proved and
therefore the total contribution along Γ3 is non-negative.

It finally remains to establish that the total contribution along Γ∗ is non-
negative. As in type B1 the contribution from ΩA

+ is

∇φ1

φ1
·~ν∗ =

f (θ1)

r1
cos(θ1 +

δ

2
).

This is is non-negative since θ1 < (β + γ −π)/2 and β + γ + δ < 2π . This
completes the proof.
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Abstract. In this expository paper we first describe some important geometric
structures in 4-manifold theory, namely broken Lefschetz fibrations and near-
symplectic structures. We then outline the construction of certain Poisson
structures related to them and discuss their cohomology. The cohomology
results are drawn from joint work with Ramón Vera.

Dedicated to my teachers at the School of Mathematics, Aristotle University
of Thessaloniki, on the occasion of the Department’s 90th anniversary.

1 Introduction

The study of smooth structures on 4-manifolds is known to be of significant
difficulty. The central goal, the classification of such structures has attracted
a lot of interest from many leading researchers across the world in the last 30
years. For example, the classification of topological 4-manifolds by Freedman
was awarded a Fields Medal and Donaldson’s work on restrictions of the inter-
section form and producing invariants of the smooth structures on 4-manifolds
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received the same distinction. Corresponding work in 3-manifolds, also re-
sulted in two Fields Medals (Thurston and Perelman). The subject is thus vast
and important, and relies by now upon the work of many excellent authors,
some of them are to be mentioned below extensively, (Auroux, Katzarkov,
Taubes et al.). Trying to speculate on a timeline, recall that the passage from
the main classification result in 2 dimensions (the Uniformization Theorem of
compact Riemann surfaces) to Perelman’s proof of Thurston’s Geometrization
Conjecture took about a century. It is thus almost certain that a classification
of smooth 4-manifolds will not be available for AUTH’s Department of Math-
ematics next anniversary 10 years from now. However our understanding on
the subject has increased significantly in the last decades, and the present text
is an attempt to provide a glimpse to the array of strategies used to attack the
problem.

As it will be explained in section 3, the subject lies heavily in connec-
tions between topology and geometry. One instance of this idea is the close
relation between symplectic Lefschetz fibrations and symplectic 4-manifolds
(see Theorems 1, 2). It thus makes sense that our approach here is through
Poisson geometry, which we use to derive topological information of the 4-
manifold. In particular we concentrate on Poisson cohomology, which as any
cohomology theory, contains important information about the geometry of
the underlying (Poisson) manifold such as the modular class, obstructions to
deformations and deformation quantization. Our point is that the singulari-
ties of the main structures that were developed in the last decades towards
the classification of smooth 4-manifolds, i.e broken Lefschetz fibrations and
near-symplectic structures, can be traced in the Poisson cohomology of certain
Poisson structures related to them. The interesting feature is that in general
Poisson cohomology is very hard to compute. One can look at easy cases
by restricting the dimension of the manifold or the complexity of the Poisson
structure (e.g. take it to be linear) but even then, success is in general limited.
However in the two instances discussed above, we will outline why Poisson
cohomology is completely computable.

The paper is structured in three sections. We begin by establishing some
definitions and properties related to Poisson cohomology (section 2). Next,
in section 3 we cover broken Lefschetz fibrations, with their definition, main
properties and the Poisson structure to be examined. We then proceed to the
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discussion of the corresponding Poisson cohomology. Next follows section
4 covering near-symplectic structures, with their definition, main properties
and a related Poisson structure. We conclude again by describing its Poisson
cohomology.

Acknowledgements The author warmly thanks the organizers of the confer-
ence dedicated to the AUTH Department of Mathematics 90th anniversary.
This text is a written account of the author’s talk at the conference and draws
extensively from [3, 4].

2 Poisson cohomology

We first recall some basic objects from Poisson geometry, see e.g. [16] for
details.

A Poisson structure on a smooth manifold M is a Lie bracket {·, ·} on
C∞(M) satisfying the Leibniz rule { f g,h}= f{g,h}+g{ f ,h}. Equivalently,
such a structure is determined by a Poisson bivector field

π ∈ X2(M) = Γ(∧2T M),

which is a bivector field satisfying [π,π]SN = 0 for the Schouten-Nijenhuis
bracket

[·, ·]SN : Xk(M)×Xl(M)→ Xk+l−1(M).

The Poisson bracket and bivector field are mutually determined by the equa-
tion { f ,g}= 〈π,d f ∧dg〉.
Let us now fix the notation and sign conventions for the Schouten-Nijenhuis
bracket. Fix a system of local coordinates on M and consider ζi = ∂xi as an odd
variable, so that ζiζ j =−ζ jζi. A p- vector field P ∈ Xp(M) is then written as
P = ∑

i1<···<ip

Pi1···ipζi1 · · ·ζip , with Pi1···ip ∈C∞(M). Then for Q ∈Xq(M), define

[P,Q]SN = ∑
i

∂ζi(P)∂xi(Q)− (−1)(p−1)(q−1)
∂ζi(Q)∂xi(P). (1)

where ∂ζik
ζi1 · · ·ζip = (−1)p−kζi1 · · · ζ̂ik · · ·ζip .
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Contraction with π defines a vector bundle homomorphism π] : Ω1(M)→
X1(M), usually referred to as the anchor map. Pointwise it is π

]
p(αp) =

πp(αp, ·) and π] can be extended to a C∞(M)- linear homomorphism

∧• π
] : Ω

•(M)−→ X•(M), (2)

which we denote again by π]. The Hamiltonian vector field of f ∈C∞(M) is
then X f = π](d f ). The map (2) is a chain map and defines a homomorphism
of graded Lie algebras

π̂
] : H•dR(M)→ H•π(M). (3)

In general, π̂] is neither injective nor surjective.
A bivector field π induces an operator dπ : X•(M)→X•+1(M) by dπ(X)=

[π,X ]SN, and if π is Poisson then d2
π = 0. The pair (X(M),dπ) is called the

Lichnerowicz-Poisson cochain complex, and

Hk(M,π) :=
Ker

(
dπ : Xk(M)→ Xk+1(M)

)
Im(dπ : Xk−1(M)→ Xk(M))

, k = 0, . . . ,dimM, (4)

are the Poisson cohomology spaces of (M,π). The lower degrees of Pois-
son cohomology have concrete interpretations: The 0-th degree contains the
Casimir functions, that is those C∞− functions f that are in the center of the
Poisson algebra (C∞(M),{·, ·}). In other words, X f = 0, or equivalently, such
f , generate trivial dynamics. The first cohomology group is the quotient of
Poisson vector fields, i.e. those X such that the Lie derivative of π vanishes,
LX π = 0, modulo Hamiltonian vector fields. The second Poisson cohomol-
ogy group is the quotient of infinitesimal deformations of π modulo trivial
deformations, and finally H3(M,π) measures the obstruction to formal defor-
mations of π .

Example 1. If (M,ω) is symplectic with associated Poisson structure πω , its
Poisson cohomology is known, as π̂

]
ω is an isomorphism:

H•dR(M)' H•(M,πω),

and [π](ω)] = [πω ].
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Example 2. A well studied case of Poisson cohomology emerges from results
of Lu [19], Ginzburg and Weinstein [13]. If g is a compact semisimple Lie
algebra and W the Lie-Poisson structure on g∗, one has

Hk
π(g
∗,W ) = Hk

Lie(g
∗)⊗Cas(g∗,W ),

where HLie(g
∗) is the Lie algebra cohomology of g and Cas(g∗,W ) denotes

the space of Casimirs of (g∗,W ).

Consider an orientable Poisson manifold with positive volume form Ω.
The vector field Y Ω : C∞(M)→C∞(M) defined by

LX f Ω = (Y Ω f )Ω

is a Poisson vector field known as the modular vector field with respect to Ω.
One can check directly that there is a canonically defined Poisson cohomology
class

[
Y Ω
]

called the modular class of (M,π). If
[
Y Ω
]
= 0 then (M,π) is

called unimodular.
Let ? denote the family of C∞(M)− linear operators

? : Xk(M)→Ω
n−k(M), ?X = ιX Ω. (5)

When (M,π) is unimodular, ? induces an isomorphism between the k-th Pois-
son cohomology group Hk

π(M) and the (n− k)-th Poisson homology group
Hπ

n−k(M).
Finally we recall a special class of Poisson structures, the so-called Jaco-

bian Poisson structures. A Poisson structure on R[x1, · · · ,xn] is called Jaco-
bian ([7], attributed to Flaschka and Ratiu) if there are n−2 generic polyno-
mial functions P1, · · · ,Pn−2 such that the Poisson bracket of two coordinate
functions is given by

{xi,x j}µ = µ(x1, · · · ,xn)
dxi∧dx j ∧dP1∧·· ·∧dPn−2

dx1∧·· ·∧dxn
. (6)

Denote by πµ the bivector field corresponding to {·, ·}µ . Obviously the Pi’s
are Casimirs of πµ . It is easily checked that Jacobian structures are examples
of unimodular Poisson structures and so the family (5) of isomorphisms ?
induces a family of isomorphisms

Hk(Rn,πµ)
'→ Hn−k(Rn,πµ),

between Poisson cohomology and Poisson homology.
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3 Broken Lefschetz fibrations

Before getting to the actual definition of a broken Lefschetz fibration (hence-
forth bLf ) on a smooth 4-manifold, we wil give some background on their
development to motivate the reader’s interest.

One has to start from the construction of a Lefschetz pencil. This is a
holomorphic analogue of a height function on a compact smooth manifold
embeddded in some Rn. The idea is naturally related to Morse functions. To
be more precise, let P(d,n) be the projective space of homogenous degree d
polynomials in n+ 1 complex variables z0, . . . ,zn. These are polynomials on
CPn and one can consider the holomorphic embedding CP1 → P(d,n). We
can choose two polynomials P0,P1 such that the previous embedding is given
by

I : [t0; t1] 7→ t0P0 + t1P1.

Definition 1. A pencil of degree d on CPn is a family of hypersurfaces H[t0;t1]⊆
CPn of degree d that are the zero sets of the polynomials t0P0 + t1P1, images
of the embedding I .

The intersection B :=
⋂

[t0;t1] H[t0;t1] is called the base locus of the pencil.
Given this definition of a pencil on CPn, one can further define pencils on
smooth varieties X ⊆ CPn of complex dimension N by restricting a pencil on
CPn. In partiular, taking BX = B∩X , a pencil on X is a map f : X \B→ CP1

sending x ∈ X to the unique [t0; t1] such that x ∈ H[t0;t1].
Among pencils on X , of particular interest in algebraic geometry are Lefschetz
pencils. These are pencils on X with the additional conditions that BX is a
smooth submanifold of complex dimension 2, and that the map f has non-
degenerate critical points with distinct critical values. As it is obvious, with a
Lefschetz pencil one looks at nice fibrations in the sense that they result from
maps mimicking the properties of Morse functions in the smooth setting.
We will not go into details about the properties of a Lefschetz pencil and its
particular geometric features. We only point out that the base locus B is the,
non-empty, intersection of all fibers. Additionally, on a Lefschetz pencil, there
are critical points on the fibers over critical values in CP1. These are modelled
by z2

1 + z2
2 and are nodal singularities. Futhermore, similar to the fact that
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Morse functions form an open and dense subset of all smooth real functions
on a smooth manifold, Lefschetz pencils are abundant among pencils.
To obtain a fibration for which the fibers have no common points, one has
to blow up the base B. The result is what is called a Lefschetz fibration f̂ :
X̂ → CP1, where the hat denotes the blow-up of B in the algebraic-geometric
sense: The blow-up X̂ has the same dimension as X and results from X by
replacing each point of the base B by the projective space of all lines through
that point. Essentially, one attaches a copy of CP1 at each point of B. This is
still a singular fibration, as now there are only isolated critical points on the
fibers over the critical values of the underlying Lefschetz pencil.

To motivate further the introduction and study of such fibrations in relation
to the classification of smooth 4-manifolds, we now point out the following
two central results.

Theorem 1 (Gompf). Let X be a closed 4-manifold and let f : X → S2 (drop-
ping the hat) be a Lefschetz fibration. Let [F ] denote the homology class of
the fiber. Then X admits a symplectic structure with symplectic fibers if and
only if [F ] 6= 0 in H2(X ,R).

The result pointing in the other direction is the following.

Theorem 2 (Donaldson). Any compact symplectic 4-manifold (X ,ω) admits
a Lefschetz fibration after blow-up.

The previous results, show that there is a close relation between Lefschetz
fibrations and symplectic structures on smooth 4-manifolds. To encompass
even more classes of 4-manifolds, Auroux, Donaldson and Katzarkov pro-
posed to allow a second kind of singularities for a Lefschetz fibration. The
reason for this, as well as the particular kind of singularity they introduced, is
justified by a result (Theorem 7) that we postpone to the next sections. The
result essentially proves that there is a correspondence (although not 1-1 or
canonical) between broken Lefschetz fibrations and a generalization of sym-
plectic structures, called near-symplectic structures, that were introduced by
Taubes (Definition 4) .

To avoid running ahead of ourselves too much, we will now restrict to
smooth manifolds of dimension 4 and discuss broken Lefschetz fibrations.
Besides our goals for Poisson geometric reasons, this makes sense as in this
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case the base B is by definition a discrete set. A bLf is a generalization of a
Lefschetz pencil [8, 2] and in particular it is a map from a 4–manifold M to
the 2-sphere, with a singularity set consisting of a finite collection of circles
which can be assumed to be disjoint, called fold singularities, and a finite
set of isolated points, also known as Lefschetz singularities. Note that in the
setting of a 4− manifold with 2-dimensional base, fold singularities are lines.
If the manifold is closed, then they are circles. The precise definition in the
closed manifold case is given below.

Definition 2. On a smooth, closed 4-manifold M, a broken Lefschetz fibration
or bLf is a smooth map f : M→ S2 that is a submersion outside a singularity
set CtΓ. The allowed singularities are of the following type:

1o Lefschetz singularities: finitely many points

C = {p1, . . . , pr} ⊂M,

which are locally modeled by complex charts

C2→ C, (z1,z2) 7→ z2
1 + z2

2,

2o indefinite fold singularities, also called broken, contained in the smooth
embedded 1-dimensional submanifold Γ⊂M \C, and which are locally
modelled by the real charts

R4→ R2, (x0,x1,x2,x3) 7→ (x0,−x2
1 + x2

2 + x2
3),

where x0 is the coordinate on the circle, and x1,x2,x3 are the normal
coordinates.

In [9] it is shown that on a bLf there is an associated Poisson structure π

whose degeneracy locus coincides with the singularity set of the fibration. It
is further known that every 4-manifold can be equipped with a bLf [1], thus a
Poisson structure π exists on any homotopy class of maps from a 4-manifold
M to S2. In particular, we will use the models from the following.

Theorem 3. [9] Let M be a closed oriented smooth 4-manifold. On each
homotopy class of maps from M to the 2-sphere there exists a complete Poisson
structure of rank 2 on M whose associated Poisson bivector vanishes only on
a finite collection of circles and isolated points.
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The local model of π around the singular locus Γ is given by

πΓh = h(x0,x1,x2,x3)

(
x1

∂

∂x2
∧ ∂

∂x3
+ x2

∂

∂x1
∧ ∂

∂x3
− x3

∂

∂x1
∧ ∂

∂x2

)
. (7)

where h is a non-vanishing function. Around the points of C the local model
is given by

πCh = h(x1,x2,x3,x4)

[
(x2

3 + x2
4)

∂

∂x1
∧ ∂

∂x2
+(x2x3− x1x4)

∂

∂x1
∧ ∂

∂x3

− (x1x3 + x2x4)
∂

∂x1
∧ ∂

∂x4
+(x1x3 + x2x4)

∂

∂x2
∧ ∂

∂x3

+ (x2x3− x1x4)
∂

∂x2
∧ ∂

∂x4
+(x2

1 + x2
2)

∂

∂x3
∧ ∂

∂x4

]
,

(8)

where h is again a non-vanishing function.
Obviously one has to distinguish the Poisson cohomology calculation on

a bLf in two independent cases as the models around indefinite fold and Lef-
schetz singularities are different. For the Poisson cohomology around Lef-
schetz singularities we use the observation that some intrinsic properties of
the particular Poisson structure match those of the Poisson structure associ-
ated to a certain elliptic curve, namely the Sklyanin algebra [22]. In particular,
the Poincaré series of the Poisson homology is known, and since our model
is unimodular, we can claim that we know its Poincaré series. However one
cannot use the results of [22] directly. First, we identify a specific Clifford
rotation D of R4 that fixes the Lefschetz singularity, and an endomorphism K
of so(4) that fixes D.

In order to write down simpler formulas for the coboundary operator, we
will choose the function h in the formula (8) of the model πCh to be constant
and equal to h = 1. Furthermore, the model (8) belongs to the class of Jaco-
bian Poisson structures. The choice h = 1 implies that the function µ in (6) is

constant with µ =−1
4

. For the formulas with generic µ , we refer to [3]. The
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Casimirs of πC1 are given by the real and imaginary parts of the parametriza-
tion of the Lefschetz singularities in Definition 2. Namely

P1 = x2
1− x2

2 + x2
3− x2

4 , P2 = 2(x1x2 + x3x4). (9)

To save time and space, we refer the reader to [22] for the definition of the
operators ∇,×̄,× in the following proposition.

Proposition 1. [3] For P1,P2 as in (9), the coboundary operators of the Pois-
son cohomology of the model (8) are given by the following formulas

d0(g) =
1
4

∇g ×̄
(
∇P1×∇P2

)
(10)

d1(Y ) =
1
4

K−1
[

Div(Y )∇P1×∇P2 +∇×
(

Y ×̄φ(∇P1×∇P2)

)]
(11)

d2(W ) =
1
4

D
[(

∇×̄K(W )
)
×̄φ (∇P1×∇P2) + ∇

(
K(W ) ·φ (∇P1×∇P2)

)]
(12)

d3(Z) =−1
4
(
∇×D(Z)

)
·φ (∇P1×∇P2) . (13)

Alternatively, d3(Z) =−1
4

Div
[

D(Z)×̄(∇P1×∇P2)

]
.

With these compact formulas, one can proceed to compute the Poisson
cohomology spaces (4). In our analysis it is also possible to calculated the
generators of each cohomology group explicitly. These generators determine
each cohomology group as a free module over the algebra of Casimirs, that
is over the polynomials R[P1,P2]. The precise result, taken from [3], is the
following.

Theorem 4. [3] Let f : M → S2 be a broken Lefschetz fibration on an ori-
ented, smooth, closed 4-manifold M. Denote by π ∈ X2(M) the associated
Poisson structure vanishing on a Lefschetz point p as in (8). The Poisson
cohomology at a ball centered at p is determined by the following free Cas-
modules
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H0(UC,π)∼= R
H1(UC,π)∼= R∼= R〈E〉

H2(UC,π)∼= R6 ∼=

[
5⊕

k=1

K−1(∇νk×∇P1)

]
⊕K−1(∇P1×∇P2)

H3(UC,π)∼= R13 ∼=

[
5⊕

k=1

D(∇νk)

]
⊕

[
5⊕

k=0

νkD(∇P2)

]
⊕D(∇P1)⊕ x1x2 D(∇P1)

H4(UC,π)∼= R7 ∼= span〈1,ν1,ν2,ν3,ν4,ν5,ν6〉 ,

where

• Cas denotes the algebra of Casimirs R[P1.P2] with P1 = x2
1− x2

2 + x2
3−

x2
4, P2 = 2(x1x2 + x3x4)

• E = ∑
4
i=1 xi∂i is the Euler vector field in coordinates (x1,x2,x3,x4),

around p,

• (νk)0≤k≤6 = (1,x1,x2,x3,x4,x1x2,x3x4).

We now proceed to compute the cohomology on a tubular neighborg-
hood U ' S1 × B3 around a fold singularity (circle). A direct calculation
of the Hamiltonian vector fields of the coordinate functions and the Poisson
coboundary operator d = [π,•]SN using the Schouten-Nijehuis formula (1)
gives the following Lemma.

Lemma 1. The Poisson coboundary operator of the model (7) for h = 1 is
given by the formulas below.
For f ∈C∞(R4),

d0( f ) =
3

∑
i=1

∂i( f )Xi =−
3

∑
i=1

Xi( f )∂i. (14)

For Y = ∑
3
i=0 fi∂i ∈ X1(R4),
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d1(Y ) =
3

∑
i=1

Xi( f0)∂0i−
3

∑
i< j=1

(
Xi( f j)−X j( fi)+(−1)[

i+ j
2 ] fk

)
∂i j (15)

where [t] denotes the integral part of t ∈ R, for example [3.7] = [3] = 3 and
the index k is the index completing the triplet {i, j,k} = {1,2,3} for chosen

i < j. Furthermore, for W =
3

∑
i< j=0

fi j∂i j ∈ X2(R4),

d2(W ) =
3

∑
i< j=1

(
Xi( f0 j)−X j( f0i)+(−1)[

i+ j
2 ] f0k

)
∂0i j (16)

+

(
3

∑
i< j=1

(−1)iXi( f jk)

)
∂123

and finally, for Z =
3

∑
i< j<k=0

fi jk∂i jk ∈ X3(R4),

d3(Z) =

[
3

∑
i< j=1

(−1)k+1Xk( f0i j)

]
∂0123. (17)

Given the formulas of Lemma 1 for the differential operator d, a close
analysis of the systems of partial differential equations describing the Poisson
cohomology spaces (4) permits the calculation of rank and generators for each
H•(UΓ,π):

Theorem 5. [3] Let f : M → S2 be a broken Lefschetz fibration on an ori-
ented, smooth, closed 4-manifold M. Denote by π ∈ X2(M) the associated
Poisson structure vanishing on a circle Γ. The formal Poisson cohomology of
(M,π) on the tubular neighbourhood UΓ is determined by the following free
Cas- modules
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H0(UΓ,π)∼= R

H1(UΓ,π)∼= R∼= R〈 ∂

∂x0
〉

H2(UΓ,π)∼= 0

H3(UΓ,π)∼= R∼= R〈 ∂

∂x1
∧ ∂

∂x2
∧ ∂

∂x3
〉

H4(UΓ,π)∼= R∼= R〈vol〉 ,

where

• x0 is the parameter of the circle Γ with normal coordinates (x1,x2,x3),

• Cas denotes the algebra R[Q1,Q2] of Casimirs with Q1 = x0,Q2 =
−x2

1 + x2
2 + x2

3,

• vol is the volume form dx0∧dx1∧dx2∧dx3 around Γ.

4 Near-symplectic structures

In this section we recall basic definitions and properties of near-symplectic
structures. We will make the relation to broken Lefschetz fibrations and then
discuss the Poisson cohomology of a related Poisson structure, different from
the one of Theorem 3.

We start by defining the intersection form. On a topological, closed,
oriented 4-manifold X , the intersection form IX is a symmetric pairing on
the second de Rham cohomology group H2(X ,R) given by the application
(ω,η) 7→

∫
X ω ∧η . Choosing a basis for H2(X ,R), IX can be expressed as a

diagonal matrix. Then the number of positive, resp. negative, eigenvalues of
this matrix is denoted by b+2 , resp. b−2 , and b+2 +b−2 = b2 = dimH2(X ,R). As
the notation suggests, these are the positive/negative parts of the second Betti
number.

Let now (X ,g) be an oriented Riemannian 4-manifold. The Hodge star
operator ∗g is defined to be the unique involution of Ω2(X) satisfying ∗gdxi∧
dx j = dxk∧dxl where {i, j,k, l} is an even permutation of {x1,x2,x3,x4}.
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Definition 3. A 2-form ω ∈ Ω2(X) is called self-dual if ∗gω = ω and anti-
self-dual if ∗gω =−ω .

Since ∗g is defined pointwise, one can define Λ2
+(X),Λ2

−(X) the rank-
three subbundles of self-dual and anti-self-dual elements of Λ2(X) = Λ2T ∗X .
With a simple calculation, one can compute a basis of each fiber of these
subbundles, for example

Λ2
+(X)p = R{dx1∧dx2 +dx3∧dx4,dx1∧dx3−dx2∧dx4,dx1∧dx4 +dx2∧dx3}.

In particular we have that Λ2(X) = Λ2
+(X)⊕Λ2

−(X) and so

Lemma 2. If X is compact, the dimension of the space of all closed self-dual
2-forms is equal to b+2 .

This shows that there is no problem in finding closed self-dual forms.
Furthermore they are of particular importance to the work of Taubes and al
in relating Seiberg-Witten invariants to Gromov invariants. We will not give
more details here, but what is of particular importance to us now is that closed
self-dual forms are closely related to a kind of singular symplectic forms in-
troduced by Taubes.

Definition 4. A near-symplectic form ω on a smooth oriented 4-manifold X
is a closed 2-form such that ω ∧ω ≥ 0, the rank of ωp as a skew-symmetric
matrix evaluated at a point p ∈ X is either 0 or 4, and ω is transverse to the
zero section of Λ2

+(X). The singular locus Zω ⊂ X of ω is defined to be the
space where ω = 0.

Example 3. Let Y 3 be closed manifold, X = S1×Y 3, t ∈ S1, and f : Y 3→ S1

be a Morse function with index 1 or 2. Then X is near-symplectic with

ω = dt ∧d f +∗(dt ∧d f )

.
The singular locus is then Zω = {p ∈ X | ω = 0}= S1×Crit f . Indeed, by the
Morse Lemma, let f (y1,y2,y3) = c− y2

1 + y2
2 + y2

3. Then

ω =−2y1(dt ∧dy1−dy2∧dy3)

+2y2(dt ∧dy2−dy1∧dy3)

+2y3(dt ∧dy3 +dy1∧dy2).
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The relation between near-symplectic and closed self-dual forms is estab-
lished below.

Theorem 6. [25, Thm. 4] [2, Prop. 1] Let X be a smooth, oriented 4-
manifold. For a near-symplectic form ω on X, there is a Riemannian metric g
on X such that ω is self-dual and harmonic with respect to g. Conversely, if X
is compact and b2

+(X)≥ 1, then for a generic Riemannian metric g there is a
closed, self-dual harmonic form ω , that vanishes transversally as a section of
Λ2
+T ∗X and defines a near-symplectic structure. The zero set of ω is a finite,

disjoint union of embedded circles.

The result of Auroux, Donaldson and Katzarkov that was mentioned in
section 3 relates near-symplectic structures, a geometric structure on a given
4-manifold, to broken Lefschetz fibrations, which are used to grasp smooth
structures on the 4-manifold.

Theorem 7. [2] Up to blowups, every near-symplectic 4-manifold (X ,ω) can
be decomposed into (a) two symplectic Lefschetz fibrations over discs, and (b)
a fibre bundle over S1 which relates the boundaries of the Lefschetz fibrations
to each other via a sequence of fibrewise handle additions taking place in a
neighbourhood of the zero set of ω . Conversely, from such a decomposition
one can recover a near-symplectic structure.

We now recall the well known fact, that any symplectic form induces a
Poisson structure. Indeed, in the presence of a symplectic ω ∈ Ω2(X), one
may define a Poisson structure setting π = ω−1 in the sense that { f ,g} =
ω(X f ,Xg). Such Poisson structures have maximal constant rank throughout X
and belong to the larger family of regular Poisson structures, i.e those of con-
stant rank. It is thus natural to wonder whether a singular symplectic structure
induces some sort of singular Poisson structure similarly to what happens in
the symplectic/regular Poisson case. This question has already been treated
by introducing various singular Poisson structures, e.g log-symplectic struc-
tures. What we want to discuss now, is whether the near-symplectic structures,
induce some Poisson structure that can be related to the geometry of the un-
derlying manifold. A local answer to this is given by the following result taken
from [4].
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Proposition 2. [4] Let (X ,ω) be a closed near-symplectic 4-manifold with
singular locus Zω . Denote by UZ ⊂ X a tubular neighbourhood of Zω . There
is a Poisson structure πU on UZ such that the vanishing locus of πU contains
Zω .

In fact, the geometry induced by the near-symplectic structure ω , gives
a vector bundle decomposition of the normal bundle NZω over the singular
locus. This decomposition is NZω = L1⊕L2 where L1 is a line bundle and
L2 is a plane bundle. Using this and the corresponding Euler vector fields,
one can build a particular model for the Poisson structure πU . For this, we
henceforth assume that the local expression of πU is

πU = x1

(
∂

∂x0
∧ ∂

∂x1
+

∂

∂x2
∧ ∂

∂x3

)
+ x3

(
∂

∂x0
∧ ∂

∂x3
+

∂

∂x1
∧ ∂

∂x2

)
. (18)

Given this model, one can compute directly the Hamiltonian vector fields
of the coordinate functions {x0,x1,x2,x3} on the 4-manifold. More precisely,

π
](dx0) =−x1∂1− x3∂3,

π
](dx1) = x1∂0− x3∂2,

π
](dx2) = x3∂1− x1∂3,

π
](dx3) = x3∂0 + x1∂2.

Using the notation Xk := π](dxk) we may write compact formulas for the
coboundary operator d determining the cohomology spaces (4). Namely, if
Xk denotes the space of k-vector fields on R4, then for f ∈C∞(R4), it is

d0( f ) =−
3

∑
k=0

Xk( f )∂k.

Also, for Y = ∑
3
k=0 fk∂k ∈ X1, and s the index completing the triplet {1,2,3}

once i < j are chosen, one finds

d1(Y ) =
3

∑
k=1

[
Xk( f0)−X0( fk)−

1− (−1)k

2
fk
]
∂0k

+
3

∑
i< j=1

[
X j( fi)−Xi( f j)−

1− (−1)i+ j

2
fs
]
∂i j, (19)
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where ∂i j := ∂i∧ ∂ j for i < j. Similarly, denote an arbitrary bivector field as

W =
3

∑
i=0< j=1

fi j∂i j ∈ X2 and set ∂i jk := ∂i∧∂ j ∧∂k for i < j < k. Then,

d2(W ) =
[
−X0( f12)+X1( f02)−X2( f01)− f12 + f03

]
∂012

+
[
−X0( f13)+X1( f03)−X3( f01)−2 f13

]
∂013

+
[
−X0( f23)+X2( f03)−X3( f02)+ f01− f23

]
∂023

+
[
−X1( f23)+X2( f13)−X3( f12)

]
∂123. (20)

Finally, let Z =
3

∑
i=0< j=1<k=2

fi jk∂i jk ∈ X3 be an arbitrary 3-vector field. Then

d3(Z) =
[
X3( f012)−X2( f013)+X1( f023)−X0( f123)−2 f123

]
∂0123. (21)

Using the formulas above and an analysis of the action of the Hamiltonian
vector fields of the coordinate functions on polynomials, it is possible to solve
the systems of linear partial differential equations that determine the solution
spaces (4). For the details we refer to [4]. One then is able to show, that
these arguments hold also when the coefficient functions of k− vector fields
are formal power series. This results in the computation of what is called, the
formal Poisson cohomology.

Theorem 8. [4] Let H•(UZ,πU) denote the formal Poisson cohomology groups
of the Poisson bivector πU on a tubular neighborhood UZ of the singular locus
Zω . Then

H0(UZ,πU)' R,
H1(UZ,πU)' R〈∂0,∂2〉 ' R2,

H2(UZ,πU)' R〈∂0∧∂2〉 ' R,
H3(UZ,πU) = 0,

H4(UZ,πU) = 0.
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Note that all nonzero contributions in the cohomology groups of the theo-
rem above, come from calculating the solutions of the corresponding system
of differential equations on k- vector fields with constant coefficients. Indeed,
it can be proven, see [4], that any k- vector field with nonconstant polynomial
coefficients that is a coboundary, is also a cocycle.

The assumption that the coefficient functions of the k- vector fields consid-
ered above are formal power series in all variables can be relaxed. Assuming
that the coefficient functions are smooth in x0,x2 and formal power series in
x1,x3 does not affect any part of the proofs for each cohomology group. To
be able to compute the Poisson cohomology with smooth coefficients, one
then needs to use a theorem of Borel, stating essentially that the passage from
formal to smooth cohomology, lies upon the calculation of the Poisson coho-
mology with flat coefficients. This is the cohomology of the complex with
k-vector whose coefficient functions and all their derivatives vanish on a par-
ticular (singular) locus. In our setting this can be proved showing that the
complex with flat coefficients is acyclic, and so the Poisson cohomology with
smooth coefficients identifies with the cohomology with formal coefficients
from Theorem 8.
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Abstract. Parallel Mesh Generation and Adaptivity (PMGA) dates back to
the 1990s and since then has been successfully applied to a wide spectrum of
(bio-)engineering applications which span from image guided neurosurgery
in health care to planning future missions to Mars in aerospace industry. The
primary reasons for such a broad impact are three: (a) large-scale mod-
eling and simulation, (b) real-time analysis and (c) end-user productivity.
NASA’s “CFD Vision 2030 Study: A Path to Revolutionary Computational
Aero-sciences” and “Vision 2040: A Roadmap for Integrated, Multi-scale
Modeling and Simulation of Materials and Systems” view PMGA as one of
the central building blocks for their future developments. A call to action is
made to have other disciplines like Big Brain Data to leverage technologies
under development for aerospace industry to revolutionize our understanding
of the human brain.
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1 Introduction

Founded in 2007 with the John Simon Guggenheim Award in Medicine &
Health the Center of Real-Time Computing (CRTC) located presently at Old
Dominion University in Norfolk, VA, USA focuses on advancing the research
and the innovation space on parallel mesh generation. The core mission
of the CRTC is the development of disruptive technologies for managing
extreme-scale parallel computations and big data for all types of CAD-
and image/sensor-driven science & (bio-)engineering applications from
aerospace, materials and health care industry. Currently Funded Research
projects include :

• NSF/NASA/DoD: Exascale-Era Parallel Mesh Generation & Adaptiv-
ity Framework: CFD Vision 2030 Telescopic Approach Parallel Run-
time Software Systems

• NIH: Real-time deformable registration for Image Guided Neurosurgery
Adaptive Physics Based Non-Rigid and Registration Deep Learning

• NSF/NIH: Real-time Image-To-Mesh (I2M) conversion for biomedical
and materials applications

• Cheng/Dragas: Computer Aided Personalized Education: Euclidean
Geometry

Common theme in all applications is the need of Extreme-scale & Real-
Time Mesh Generation. This document includes a brief introduction to paral-
lel mesh generation, as well as an application of mesh generation to a Com-
putational Fluid Dynamics simulation.

2 Background

2.1 Introduction to Parallel Computations

Parallel computing is based on the idea of decomposing a problem into smaller
subproblems that can be processed concurrently. Inter-dependence between
the subproblems may or may not exist. In the former case, parallel execution
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is straightforward since no communication between different execution units
is needed. While in the latter case, the amount and type of communication
(i.e. whether it is blocking or not) affects significantly the design and the
complexity of a method. For the cases mentioned in this paper the unit of work
are executed on the physical cores of a multicore system of supercomputer.

Main concern when studying parallel applications is the parallel scalabil-
ity, that is : What is the gain in execution time when using more than one cores
? More formally, the following metrics will be used to evaluate the scalability
of the presented methods.

Speedup S: The ratio of the sequential execution time of the fastest known
sequential algorithm (Ts) to the execution time of the parallel algorithm
(Tp).

Efficiency E: The ratio of speedup (S) to the number of cores (p): E = S/p=
Ts/(pTp).

Moreover, these metrics come in two forms, strong and weak scalabil-
ity. In a strong scalability analysis the size of the problem remains the same
and the number of cores is increased. An application with ideal performance
should reduce the execution time proportionally to the number of cores used.
On the other hand, in a weak scalability study the size of the problem is pro-
portionally increased with the number of cores. Ideal performance in this case
is when the execution time remains the same while the problem is scaled up.
In this work, we focus mainly in the latter case.

2.2 Introduction to Finite Element Method

The finite element method is a numerical method used to solve a wide variety
of engineering and physics problems. In most of the cases, the solution of
these problems requires the solution of partial differential equations. The crux
of the method is to approximate the partial differential equations to a system of
algebraic equations. This is achieved by decomposing the domain into a finite
number of simpler shapes ( triangles, quadrilaterals and in general polyhedra)
and deriving a simpler form of the equation within each finite element. The
contributions from each of the simpler equations are then combined into a big
algebraic system which is solved using methods of numerical analysis.
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3 Approach to Exascale : Exploit Parallelism utilizing
the Telescopic Approach

Finite Element Mesh Generation is a critical component for many (bio-) engi-
neering and science applications. The telescopic approach to mesh generation
[4, 6] is designed to deliver highly scalable and energy efficient high quality
mesh generation for the Finite Element (FE) analysis in three dimensions.

NASA’s CFD vision for 2030 [15] describes the projected needs of in-
dustry and research applications in the Computational Fluid Dynamics field
at both software and hardware levels. One of the main components is paral-
lel mesh generation which as described in previous sections is essential for
the finite element method which is used to solve a wide class of engineering
problems in CFD.

CRTC’s approach to exascale parallel mesh generation is described in de-
tail in [4, 6]. In this document a summary of its main points will be provided.

This project will combine domain-and application-specific knowledge with
run-time system support to improve energy efficiency and scalability of par-
allel FE mesh generation codes. Traditionally, parallel FE mesh generation
methods and software are developed without considering the architectural fea-
tures of the supercomputer platforms on which they are eventually used for
production. The proposed approach is to abstract and expose parallel mesh
generation run-time information to the underlying run-time system which can
guide the execution towards the most efficient utilization of resources on the
given supercomputer. The issues of performance and energy efficiency are
closely related, and we will study them in tandem.
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Figure 1: The telescopic approach: On the left, the mapping between the
methods and the hardware. On the right, the software design of the telescopic
approach: each component is built on top of the previous taking advantage of
its capabilities and avoiding duplication of effort.

The project will focus on the following three objectives: (a) Integration of
multiple parallel mesh generation methods into a coherent hierarchical frame-
work. (b) Development of application-specific models that describe the inher-
ent concurrency and data access patterns of this framework. (c) Development
of domain-specific energy-efficient, concurrency throttling, and component-
level (core and memory) power scaling and test them on parallel mesh gener-
ation using (b).

The main idea of the telescopic approach is to separate the parallel appli-
cation into multiple layers that map easily to the different hardware levels in
an exascale supercomputer allowing thus to exploit its full potential.

More specifically, on the bottom of the telescopic approach where the
software is designed to run inside a single processor (chip). The Parallel opti-
mistic level [5, 14, 11] will be deployed. This level is characterized by intense
communication and as such it can only be scalable if it runs as close to the
hardware as possible. The main idea of the parallel optimistic approach is
to acquire data upon runtime and resolve dependencies with the use of low
level locks. This method has been proven successful in low number of cores
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offering 86% efficiency when running on 144 cores [11].
Right above this level is the Parallel Data Refinement (PDR) level [2, 3,

10, 9, 7]. This level is characterized by locally synchronous communication.
This means that the different execution units will have to block when commu-
nicating with each other, but units not taking part in the data exchange may
proceed without blocking. In this level, a lattice (or an octree in general) is
laid upon an initial mesh and the associated data which include both the ac-
tual mesh as well as information about elements to be modified are assigned to
each octree leaf. Leaves are then scheduled based on rules that exclude neigh-
boring leaves from being scheduled at the same time. This method combined
with the previous level has been able to offer up to 64% efficiency on shared
memory machine architectures [10] when running on 256 cores. And about
67% efficiency on 3000 cores on a distributed memory setting [9].

Finally, the Domain decoupled level is based on efficiency decomposing
and preprocessing the initial domain in order to create independent subdo-
mains which can be processed with no communication at all. The CRTC
group developed in the past a 2D implementation of this method [12, 13]
based on the geometrical construction of the Medial Axis. In three dimen-
sions the construction of Medial Axis is more complicated and is still an open
problem.

4 Application : Mesh Generation for Computational
Fluid Dynamics Simulations

One of the many uses of Parallel Mesh Adaptive Generation is the discretiza-
tion of the computation domain of a Computational Fluid Dynamics (CFD)
simulation. CFD simulations are used heavily in engineering in order to solve
simulations involving fluids and their interactions with surfaces. The physics
of these problems are governed by the Euler equations of Fluid Dynamics or
in the general case by the Navier-Stokes equations. Analytical solutions to
these equations are available for a very limited number of cases, moreover
the turbulence that may develop at higher speeds, renders the derivation of
analytical solutions impossible in practise. To overcome the limitations of the
analytical approach a number of approaches have emerged, one of which is the
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Finite Element Method described above and mesh generation is the procedure
which will discretize the domain of of the flow.

As part of the verification process of the tools produced at CRTC, one of
the parallel mesh generators which was adapted for metric adaptivity [17]
was coupled with a CFD solver in order to be tested on a benchmark case.
In particular, CDT3D [8] was integrated with the open source solver SU2
and a suite of metric-based error estimators and was tested against a well-
documented case of a 3D laminar flow over a delta wing [16].

Figure 2: Simulation pipeline for the simulation

The simulation pipeline follows the diagram in figure 2. In each iteration,
the Solver will use the Finite Element Method to acquire a numerical solu-
tion of the Navier-Stokes equations on the given mesh and it will produce a
solution vector. This vector is defined upon every vertex of the mesh. In the
next step, the error estimator will produce a metric which is used to control
the interpolation error of one of the variables of the solution vector acquired
in the previous step. From a mathematics standpoint, the metric is expressed
as an 3x3 positive definite matrix M(x). This is an important result since M
can induce an inner product and consequently any geometrical measurement
done during the mesh generation procedure can be performed using M. In
this way an optimization criterion based on maximizing the minimum dihe-
dral angle for example, if implemented with the aforementioned inner product
it will implicitly reduce the error while improving the minimum dihedral an-
gle. A more throughout introduction including the connection of metrics with
Euclidean and Riemannian metric spaces can be found in [1].

A visualization of the vortex created in this flow can be seen in figure 3
where streamlines are used to visualize the flow through the vortex.

One of the most significant advantages using metric-based anisotropic
mesh adaptation in this simulation is that a higher level of accuracy can be
achieved with a lower number of elements which also translates in a lower
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Figure 3: Streamlines of the final solution, # vertices 122,384 # tetrahedra
714,018

number of resources and lower simulation time, see Table 1 for a comparison
of this method with two other approaches as well as figure 4 for the improve-
ment in the estimation of two coefficient of the flow which is integral part of
the CFD analysis for this case.

Mesh Refinement Method
Uniform Adaptive Isotropic Adaptive Anisotropic

(3 iterations) (6 Iterations) (6 Iterations)
Solver Time 817.28 min 151.95 min 93.05 min
Mesh Adaptation Time 23.75 min 14.31 min 12.05 min

Table 1: Simulation time comparison for the three mesh refinement ap-
proaches

Figure 4: Absolute error of lift and drag coefficients, for three different types
of mesh refinement.
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Anisotropic mesh adaptation is not the only method to adapt a mesh. One
of the most popular semi-automatic methods incorporate refinement zones.
See for example figures 5 and 6. In this case a domain-expert will adjust the
size and position of the zones as well as the size of the generated elements
within each one. For more details see [18]. Although this approach requires
a great amount of expertise and time, it is employed by most industrial appli-
cations due to its simplicity in implementation. However, the expectation is
that as simulations become more sophisticated these procedures will transition
into more automatic methods like the metric adaptation presented earlier.

Figure 5: On the left the refinement zones used in [18]. On the right, a cross
section of the generated mesh. Elements are colored based on volume

Figure 6: Cross section of the generated mesh

5 Conclusion

Parallel Mesh Generation and Adaptivity is and will be a crucial component
of the computational pipeline of many applications in the future. Current
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and past implementations of different components of the telescopic approach
show promising results as well as a lot of opportunities for future research di-
rections. Moreover, the versatility of mesh generation as a tool and its applica-
bility to a wide variety of physics and bio-engineering problems will continue
to provide to the CRTC group many interesting real-world applications.
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Abstract. We present several local and global results on isometric immer-
sions of Kaehler manifolds M2n into hyperbolic space H2n+p. For instance, a
classification is given in the case of dimension n≥ 4 and codimension p = 2.
Moreover, as corollaries of general results, we conclude that there are no
isometric immersion in codimension p ≤ n− 2 if the Kaehler manifold is of
dimension n≥ 4 and either has a point of positive holomorphic sectional cur-
vature or is compact. Since the pioneering work of Dajczer and Gromoll [6],
[7], [8], [9] on real Kaehler submanifolds, that is, isometric immersions of
Kaehler manifolds into Euclidean space, many authors worked on the subject
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in both the local and global case. For instance, see [2], [4], [10], [12], [13],
[14], [15], [16], [17], [18], [7], [21], [24], [25] and [26].

A strong result when the ambient space is the round sphere SN is due to
Florit, Hui and Zheng [17]. By taking advantage of the umbilical inclusion
of the sphere into Euclidean space they proved that any isometric immersion
f : M2n→ S2n+p of a Kaehler manifold with codimension p≤ n−1 is part of
the product of round two-spheres, namely, M2n⊂ S2×·· ·×S2⊂ S3n−1⊂R3n.

Our purpose is to study isometric immersions of Kaehler manifolds M2n,
n ≥ 2, into hyperbolic space H2n+p. This case is certainly harder than the
spherical case, in good part due to the fact the Euclidean space can be iso-
metrically immersed in hyperbolic space with codimension one as an umbil-
ical horosphere. Hence, any euclidean submanifold becomes an hyperbolic
submanifold with codimension one higher. Nevertheless, two results have al-
ready been obtained in situations that avoid this difficulty. In the hypersurface
case Ryan [24] showed that the only possibility other than the horosphere is
M4 = H2×S2 ⊂ H5 ⊂ L6. Dajczer and Rodríguez [10] proved that if we re-
quire the immersion to be minimal then, regardless of the codimension, there
are no other possibilities than minimal surfaces.

We first consider the local situation in the case of codimension two.

Theorem 1. Let f : M2n → H2n+2, n ≥ 4, be an isometric immersion of a
Kaehler manifold without flat points. Then f = i◦g : M2n→H2n+2 is locally a
composition of isometric immersions where g : M2n→R2n+1 is a real Kaehler
hypersurface and i : R2n+1→H2n+2 the inclusion as a horosphere.

It was shown by Dajczer and Gromoll [6] that any real Kaehler hypersur-
face without flat points f : M2n→ R2n+1, n ≥ 2, can be locally parametrized
by the so called Gauss parametrization in terms of a pseudoholomorphic spher-
ical surface h : L2 → S2n and a function in C∞(L). Calabi [5] established a
correspondence between these surfaces and holomorphic maps into the her-
mitian symmetric space ℘n = SO(2n+1)/U(n) of all oriented hyperplanes in
R2n+1 with complex structure. Then Dajczer and Vlachos [11] gave a Weier-
strass type representation for the surfaces and showed how this can be used to
parametrize the hypersurfaces themselves. The trivial case, namely, when h is
a totally geodesic sphere, corresponds to cylinders where M2n = M2×R2n−2

and f = k× I where k : M2→ R3 is any surface and I is the identity map on



90 years School of Mathematics A.U.Th. 89

R2n−2. These submanifolds are the only ones in the class that can be complete
manifolds.

Example 1. Theorem 1 is sharp since it does not hold for n = 3, as shown by

M6 =H2×S2×S2 ⊂H8 ⊂ L9 = L3×R3×R3

where H2 ⊂ L3 and S2 ⊂ R3.

Next we consider the case of submanifolds with higher codimension. We
have the following consequence of a general result given later.

Theorem 2. If a Kaehler manifold M2n, n≥ 3, has positive holomorphic sec-
tional curvature at some point then there is no isometric immersion in H2n+p

for p≤ n−2.

The Omori-Yau maximum principle for the Hessian is said to hold on a
Riemannian manifold Mn if for any function g ∈C2(M) with g∗ = supM g <
+∞ there exists a sequence of points {xk}k∈N in Mn satisfying:

(i) g(xk)> g∗−1/k, (ii) ‖grad g(xk)‖< 1/k, (iii) Hess g(xk)(X ,X)≤ (1/k)‖X‖2

for all X ∈ Txk M. It is well known [3] that this maximum principle holds on a
manifold Mn if its sectional curvature satisfies

KM(x)≥−Cρ
2(x)

(
Π

N
j=1 log( j)(ρ(x))

)2
, ρ(x)>> 1,

for a constant C > 0, where ρ is the distance function in Mn to a reference
point.

In this paper we use a weaker version of the above maximum principle.
The weak maximum principle for the Hessian amounts to require only condi-
tions (i) and (iii). It is known [1] that this principle holds if Mn is a complete
manifold and there exist a function ϕ ∈C2(M) and a constant k > 0 such that
ϕ(x)→+∞ as x→ ∞ and

Hess ϕ( , )≤ kϕ〈 , 〉

outside a compact subset of Mn.
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It was shown by Mari and Rigoli [21] that if a Kaehler manifold M2n sat-
isfies the weak maximal principle for the Hessian, then it cannot be isometri-
cally immersed in a nondegenerate cone of R3n−1. This generalizes the result
of Hasanis [19] who assumed completeness and sectional curvature bounded
from below to conclude that the submanifold must be unbounded.

Theorem 3. Let f : M2n→H2n+p, 2≤ p≤ n−2, be an isometric immersion
of a Kaehler manifold. If the weak principle for the Hessian holds on M2n

then f (M) is unbounded.

In particular, we have the following consequence.

Corollary 1. There is no isometric immersion of a compact Kaehler manifold
M2n into H2n+p if n≥ 3 and p≤ n−2.

We also consider the local cases of submanifolds of dimensions four and
six but under the additional assumption of flat normal bundle.

Theorem 4. Let f : M6→H8 be an isometric immersion with flat normal bun-
dle of a Kaehler manifold without flat points. Then f is locally a composition
of isometric immersions as in Theorem 1 or is as in Example 1.

The result for dimension four is the following.

Theorem 5. Let f : M4 → Q6
c , c 6= 0, be an isometric immersion with flat

normal bundle of a Kaehler manifold free of flat points. Then one of the
following holds:

(i) c = 1 and f is the following external product of immersions.

f = h× id : L2×S2
c2
→ S3

c1
×S2

c2
⊂ S6

1 ⊂ R4×R3

where c2
1 + c2

2 = 1.

(ii) c = −1 and M4 is free of flat points. Then either f is a composition of
immersions as in Theorem 1 or is one of the following external product
of immersions:

(a) f = h× id : L2×H2
c1
→ S3

c1
×H2

c2
⊂H6

−1⊂R4×L3, c2
1−c2

2 =−1,
(b) f = h× id : L2×S2

c1
→H3

c1
×S2

c2
⊂H6

−1 ⊂ L4×R3, c2
1−c2

2 = 1.

Proof. It is omitted since it is quite similar to the one of Theorem 4.
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Logic is a scientific field traditionally practiced within the disciplines of
mathematics, philosophy and computer science. Model theory is a branch of
mathematical logic which uses logical tools in order to study known and new
mathematical structures (models). When those structures are of geometric
nature, we tend to call this branch tame geometry. This terminology is not so
broadly used, since the branch is relatively new, and in this note we aim to
explain its meaning.

The first person who used this terminology was the French geometer Gro-
thendieck, who envisioned in his Esquisse d’un Programme [5] a topologie
modérée. He asked whether there is a strict mathematical way to study re-
stricted classes of geometric objects which, however, have better geometrical
and topological properties. Among others, that class of objects should be
closed under the usual set-theoretic operations, such as union, complement
and projection.

Model theory, via tame geometry, offers one answer to Grothendieck’s
question. We risk the following definition:

Tame geometry is the study of those geometric objects that are definable
in some specific language from mathematical logic.
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That is, among all geometric objects one could possibly consider, we iso-
late and study only those that are definable in some specific mathematical
language. The benefit of this intentional restriction is that tools from math-
ematical logic become available, which can then be applied to our class of
objects in order to obtain new applications.

The key word in the above definition is that of definability. In mathemati-
cal logic, one first gives a definition of a language, then of a structure in that
language, and finally of a set definable in that structure. The definition of de-
finability is recursive and quite lengthy, and hence we omit it here. However,
it is also very intuitive and we can capture it via some examples.

Example 1. The unit circle S1 = {(x,y) ∈R2 : x2+y2 = 1} is definable in the
structure 〈R,+, ·〉. Indeed the equation of the unit circle uses · to express the
squares, and +. It also uses = and variables x,y, which are standard logical
symbols and hence not mentioned explicitly, as well as 1, which is a constant
of the universe R of our structure. Similarly, the unit disc D1 = {(x,y) ∈ R2 :
x2 + y2 ≤ 1} is definable in the structure 〈R,≤,+, ·〉.

Let us now try to identify the class of all definable sets in the structure
〈R,≤,+, ·〉. We claim that

X ⊂ Rn definable in 〈R,≤,+, ·〉 ⇐⇒ X ‘semialgebraic’, (1)

where the notion of a semialgebraic set can be defined in a purely geometri-
cal way, see Definition 1 below. Before giving that definition and trying to
argue for the above equivalence, let us point out that if we consider another
structure, by changing the universe and the underlying language, the class of
all definable sets may yield some other interesting class of geometric objects.
For example:

X ⊂ Cn definable in 〈C,+, ·〉 ⇐⇒ X constructible.

In other words, via the notion of definability, model theory offers a uniform
way to capture known classes of mathematical objects. Constructible sets are
the objects of study in algebraic geometry, semialgebraic sets in real algebraic
geometry. Here we focus on structures with universe R.
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Definition 1. A set X ⊂ Rn is semialgebraic if it is a Boolean combination of
sets of the form

{x ∈ Rn : f (x)≥ 0}, (2)

where f ∈ R[X ] is a polynomial. Sets of the form (2) are called basic semial-
gebraic sets.

It is straightforward from the definition that the class of all semialgebraic
sets is closed under taking unions and complements. It is also closed under
taking projections:

Theorem 1 (Tarski-Seidenberg 1950s). The class of semialgebraic sets is
closed under taking projections.

Therefore, the class of semialgebraic sets is closed under all set-theoretic
operations envisioned by Grothendieck.

Where does logic appear in the above considerations? It appears in the
expressions “Boolean combinations" and “projections". Let us convince our-
selves of the validity of equivalence (1), even though we have not strictly
defined the notion of definability. For the right-to-left direction, observe first
that, since polynomials f ∈ R[X ] are formed using +, ·, variables and coeffi-
cients from R, just like the disc D1, every basic semialgebraic set is definable
in the structure 〈R,≤,+, ·〉. Moreover, Boolean combinations (that is, unions
and complements) of two sets correspond to the standard logical symbols “or"
and “negation". For example, if A,B⊂ Rn, then

A∪B = {x ∈ Rn : x ∈ A or x ∈ B}.

Hence, the right-to-left direction of (1) is established. For the other direc-
tion, we need further to observe that the “existential quantifier", which we
use in logic, corresponds to the set-theoretic operation of taking projections.
For example, if X ⊂ R2 is defined via the formula ϕ(x,y), then its projection
onto the first coordinate is defined via the formula ∃yϕ(x,y). Hence, by the
Tarski-Seidenberg theorem, it follows that every set definable in 〈R,≤,+, ·〉
is semialgebraic.

We may rephrase the Tarski-Seidenberg theorem in purely logical terms
as follows:
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Theorem 2. The structure 〈R,≤,+, ·〉 eliminates quantifiers.

We thus have a correspondence between logic and geometry: the notion
of a semialgebraic set is captured via definable sets, and the content of the
Tarski-Seidenberg theorem via quantifier elimination. This correspondence
continues to a very extended level. Here we will only present the next step.

Quantifier elimination is a very powerful property in logic, since it ensures
that any set we can define using quantifiers can also be defined without them.
Thus, whenever we study a new structure in model theory, our first task is
to examine whether it has quantifier elimination. But this property, being so
strong, it almost always fails. Hence we try to replace it with some weaker
one, again expressible in a logical way as well as capturing some geometric
property. Let us take a second look at 〈R,≤,+, ·〉, and in particular at defin-
able subsets of R (and not of any Rn).

Fact 1. X ⊂ R is definable in 〈R,≤,+, ·〉 ⇐⇒ X is a finite union of points
and intervals.

Proof. Each basic semialgebraic subset of R is clearly of the desired form
(namely, finite unions of points and intervals). Moreover, Boolean combina-
tions of sets of the desired form remain of this form. Hence, inductively, every
semialgebraic subset of R is a finite union of points and intervals. By (1), we
are done.

In the 1980s, van den Dries and Knight-Pillay-Steinhorn adopted the above
property into a definition:

Definition 2. An ordered structure R = 〈R,≤, . . .〉 is o-minimal (where ‘o’
stands for ‘order’) if every definable set X ⊂R in R is a finite union of points
and intervals. Equivalently, X is definable in the structure 〈R,≤〉.

The novelty of the above definition is that, although it only requires a
property for definable subsets of the universe, it has a number of non-trivial
consequences for all definable subsets in any Rn. These consequences are of
geometrical/topological nature, much alike Grothendieck’s vision. Here and
below, the topology on R is taken to be the order-topology (generated by the
open intervals), and on Rn, the product topology.



90 years School of Mathematics A.U.Th. 99

Theorem 3. Let R = 〈R,≤,+, ·〉 be o-minimal. We have:

(a) If X ⊂ Rn is definable, then it can be partitioned into finitely many
‘cells’,

X = X1∪·· ·∪Xk,

where each cell Xi is in particular connected.

(b) f : X → R is definable (that is, its graph is a definable set), then the
above partition can be done so that moreover each f |Xi is continuous.

(c) There are no definable space-filling curves in R2, that is curves whose
topological closure is the whole R2.

(d) The structure 〈R,≤,sinx〉 is not o-minimal.

Proof. Properties (a) - (c) are non-trivial, and an extended account on o-
minimality containing their proofs can be found in van den Dries [1]. Property
(d) is easy to see: in the structure 〈R,≤,sinx〉 one can define the set of integers

Z= {x ∈ R : sinx = 0},

which is not a finite union of points and intervals.

Property (d) may strike us as a weakness of o-minimality, since it ex-
cludes trigonometric functions from our study. However, this exclusion is not
because of the ‘shape’ or topology of the sin function but because of its peri-
odicity. It is exactly that periodicity that o-minimalists tried to avoid, as being
‘wild behavior’, in their attempt to realize Grothendieck’s vision. As it turns
out, if we restrict trigonometric functions to some bounded domain and add
them to the real field, the resulting structure remains o-minimal. In fact, one
can add all restricted real analytic functions along with the exponential and
stay o-minimal. This theorem was one of the biggest breakthroughs in the
early years of o-minimality, established in a series of works:

Theorem 4 ([2, 3, 10]). Let Ran,exp := 〈R,≤,+, ·,res. analytic,exp〉 be the
expansion of the real field by all analytic functions restricted to bounded boxes
[0,1]n, and the exponential map exp : R→ R. Then Ran,exp is o-minimal.
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With a strong toolbox from o-minimality on the one hand, and an abun-
dance of o-minimal structures on the other, it is reasonable to expect some
new applications. We describe one trend of such applications, namely, of o-
minimality to Diophantine geometry. These applications are often obtained by
reducing big conjectures from Diophantine geometry (such as Manin-Mum-
ford, André-Oort) to the following theorem.

Theorem 5 (Pila-Wilkie). Let R = 〈R,≤,+, ·, . . .〉 be an o-minimal structure,
and X ⊂ Rn a definable set. Assume that X contains ‘many’ rational points.
Then X contains an infinite semialgebraic set A.

We define the notion of containing ‘many’ rational points briefly, as fol-
lows: the set X may contain infinitely many rational points (that is, tuples with
all coordinates being rational). If we bound the enumerators and denomina-
tors of those rationals by some number T , then X contains only finitely many
such points, say N(X ,T ) many. We say that X contains many rational points
if N(X ,T ) increases at least polynomially in terms of T . That is, for every
ε ∈ R>0,

N(X ,T )> O(T ε).

The gist of the Pila-Wilkie theorem is that, knowing our definable set X
contains many rational points, one can recover an infinite semialgebraic sub-
set; that is, a set definable only in the real field 〈R,≤,+, ·〉. This statement is
of Diophantine nature and matches up with the following statement.

Theorem 6 (Manin-Mumford Conjecture, roughly). Let V ⊂ (C∗)d be an al-
gebraic variety. Assume V contains ‘many’ torsion points (for example, those
may be Zariski dense in V ). Then V contains a coset aH of an algebraic
subgroup H ≤ (C∗)d .

That is, again, knowing V contains ‘many’ special points (torsion points,
in this case), we can recover (a coset of) an algebraic group in it.

Sketch of Manin-Mumford. 1 The reduction to Pila-Wilkie is done via the map

θ : C→ C∗, z 7→ e2πiz.

1We note that Manin-Mumford Conjecture was previously solved without logical methods.
The André-Oort Conjecture (or rather certain cases of it) are indeed only proved using o-
minimal methods, by Pila [7].
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It is easy to see that

θ
−1(V ) has many rational points〈R2,V ⊂ C∗ many torsion points

Moreover,
X = θ

−1(V )⊂ R2 is definable in Ran,exp!

Let A ⊂ X be as in the Pila-Wilkie theorem. Then it is not so hard to show
that θ(A) contains a coset aH of an algebraic group, as needed. For details,
see Marker [6].

Currently, a whole group of conjectures from Diophantine geometry are
being tackled using (methods around) the Pila-Wilkie theorem. The Pila-
Wilkie theorem is also being extended to more general structures, beyond
the o-minimal framework (and beyond the scope of this note), such as in [4].
Applications of the extended Pila-Wilkie theorems are pending to be explored.

Concluding, in tame geometry, instead of studying all geometric objects
one could possibly consider, we focus only on those that can be defined using
a specific mathematical language. Such a restriction often yields new tools
from logic that we can be applied on the class of all definable sets in order
to obtain new applications. The idea of using logic in order to restrict the
universe of our interest down to objects better manipulated is not new. It
goes back to Gödel, who, in his celebrated Incompleteness Theorem (1931),
worked with the language of arithmetic, and instead of considering all subsets
of Nn, he only dealt with those that can be defined in 〈N,+, ·〉. Within that
restricted fragment, he was able to ‘code’ the Liar sentence (which says ‘I am
lying’) and produce the first sentence in arithmetic that cannot be proved nor
disproved from the Peano Axioms, refuting Hilbert’s dream of axiomatizing
the whole of mathematics. Notably, Gödel’s coding functions are definable
in an even more restricted fragment of Arithmetic, that of recursive functions,
which later on gave rise to the Turing machines, known as the prodromes
of the current computers. Tame geometry is a distant descendant of Gödel’s
logical considerations and his exploitation of the logical power of restricted
languages to produce striking results. Of course, in every mathematical study
one restricts their focus to a specific class of objects, but when this restriction
becomes the object of study itself, and is relevant to geometry, we call that
study tame geometry.
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Abstract. In this article it is shown that the study of harmonic diffeomor-
phisms, with nonvanishing Hopf differential, reduces to the study of the Bel-
trami equation. The harmonic maps are classified by the classification of the
solutions of the sinh-Gordon equation. Solutions are calculated for the con-
stant curvature case in a unified way.

1 Introduction and Statement of the Results

The aim of this article is to develop a method to construct harmonic diffeo-
morphisms, with nonvanishing Hopf differential, between Riemann surfaces
M and N.
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The case when N is of constant curvature is studied in more detail: The
method to find a harmonic map is to first find a solution of the elliptic sinh-
Gordon equation, next solve the Beltrami equation and finally describe the
metric on N of constant curvature.

There are only a few examples of harmonic diffeomorphisms that are not
conformal. Using the proposed method and the elliptic functions, we can find
a family of harmonic maps to constant curvature spaces, that includes some
known examples and generalizes them.

The main result in this article could be summarized in the following theo-
rem.

Theorem 1. A harmonic diffeomorphism u : M → N between Riemann sur-
faces, with nonvanishing Hopf differential e−λ (z)dz2, is a solution of the Bel-
trami equation,

∂z̄u
∂zu

= µ(z, z̄) = e−2ω+i Imλ (z),

where
∆ω =−2KNe−Reλ sinh2ω, (1)

and KN is the curvature of the surface N.

Note that (1) for λ = 0 is the elliptic sinh-Gordon equation which has been
already extensively studied.

2 Preliminaries

2.1 Isothermal Coordinates

Let u : M→ N be a map between Riemann surfaces (M,g),(N,h). The map u
is locally represented by u = u(z) = R+ iS. The standard notation is that

∂z =
1
2
(∂x− i∂y), ∂z̄ =

1
2
(∂x + i∂y).

It is a known fact the existence of isothermal coordinates on an arbitrary
surface with a real analytic metric (see [2, Section 8, p. 396]). Consider an
isothermal coordinate system (x,y) on M such that

g = e f (x,y)(dx2 +dy2) = e f (z,z̄)dzdz̄ = e f (z,z̄)|dz|2,
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where z = x+ iy. Consider isothermal coordinate system (R,S) on N such that

h = eF(R,S)(dR2 +dS2) = eF(u,ū)dudū = eF(u,ū)|du|2,

where u = R+ iS.
Note that

KN = KN(u, ū) =−
1
2

e−F
∆F =−2∂uūFe−F

is the Gauss curvature of the metric

h = eF(u,ū)|du|2.

2.2 Harmonic Maps and the Beltrami Equation

In the case of isothermal coodinates, the map u is harmonic if it satisfies

∂zz̄u+∂uF(u, ū)∂zu∂z̄u = 0. (2)

Notice that this equation only depends on the complex structure of M and not
on the metric g of M.

Let u : M→ N be a diffeomorphism. Then the Jacobian

J(u) = eF(R,S)e− f (x,y) (∂xR∂yS−∂yR∂xS)

is nowhere vanishing.
In order to prove Theorem 1, the following observation is required.

Proposition 1. A necessary and sufficient condition for u to be a harmonic
map, it is the Hopf differential to be holomorphic, i.e.

eF(u,ū)
∂zu∂zū = e−λ (z),

where λ (z) is a holomorphic function.

Consider the Beltrami coefficient

µ(z, z̄) =
∂z̄u
∂zu

.
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The following relations are valid:

du = ∂zudz+∂z̄udz̄ = ∂zu(dz+µ(z, z̄)dz̄) ,

where
∂z̄u
∂zu

= µ(z, z̄) = e−2ω(z,z̄)+iφ(z).

This is the well known Beltrami Equation. Note that in general the Beltami
coefficient µ(z, z̄) is a complex function.

3 Main results

Consider a conformal change of coordinates such that λ (z) = 0 i.e let ζ =∫
e−λ (z)/2 dz. Let ζ = ξ + iη . Then, the above proposition implies the follow-

ing relations:

(∂xR)2 +(∂xS)2− (∂yR)2− (∂yS)2 = 4e−F(R,S)

∂xR∂yR+∂xS∂yS = 0.

Taking these equations into account, we use the following parametriza-
tion:

∂xR = 2e−
F(R,S)

2 coshwcosθ

∂xS = 2e−
F(R,S)

2 coshwsinθ

∂yR =−2e−
F(R,S)

2 sinhwsinθ

∂yS = 2e−
F(R,S)

2 sinhwcosθ

and it is easy to see that u is a solution of the Beltrami equation

∂z̄u
∂zu

= e−2w.

Using the compatability conditions ∂xyR= ∂yxR,∂xyS= ∂yxS and the above
parametrization, we find that

∂xw−∂yθ = e−
F(R,S)

2 sinhw(∂1F cosθ +∂2F sinθ)
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∂xθ +∂yw = e−
F(R,S)

2 coshw(∂2F cosθ −∂1F sinθ).

From these formulas follow that

∆w = 2e−F
∆F sinhwcoshw =−2KN sinh2w

and
∆θ = e−F(Acos2θ +Bsin2θ),

where A = 2(F12−F1F2),B = F22−F2
2 +F2

1 −F11. Note that the formula for
w is intrinsic while the formula for θ is extrinsic.

Remark 3. Considering the case that N is the hyperbolic upper-half space
equipped with the hyperbolic metric, it follows that the above system becomes
as follows:

∂xw−∂yθ =−2sinhwsinθ

∂xθ +∂yw =−2coshwcosθ .

This is a Bäcklund transform and it provides a connection between the solu-
tions of an elliptic sinh-Gordon and an elliptic sine-Gordon equations. Thus,
one can obtain solutions of the elliptic sinh-Gordon equation by the known
solutions of the sine-Gordon equation and vice versa. More precisely, the
function ω satisfies the sinh-Gordon equation

∆ω = 2sinh(2ω)

and the Bäcklund thanform θ , satisfies the sine-Gordon equation

∆θ =−2sin(2θ).

An intrinsic formula sattisfied by θ is the following:

sinh2 w∂
2
xxθ + cosh2 w∂

2
yyθ + tanhw∂xθ∂xθ

− tanhw∂yθ∂yθ +2coth2w∂xθ∂yθ −∂
2
xyw = 0

In order to solve this equation one has to find the characteristics, that is the
solutions to the equation:

dy
dx

= icothw(x,y)
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Then, one can observe that the solutions of the Beltrami equation

∂z̄u
∂zu

= e−2w

are of the form:

u(x,y) = h(ξ (x,y),η(x,y)), ∂z̄h = 0

where
∂xξ = ∂yη cothw, ∂yξ =−∂xη tanhw.

Thus, the map v = ξ (x,y)+ iη(x,y) is one solution of the Beltrami equation

∂z̄v
∂zv

= e−2w.

Thus, in order to solve the harmonic map problem, one has to solve the
sinh-Gordon

∆w =−2KN sinh2w

and then the Beltrami equation

∂z̄u
∂zu

= e−2w,

by solving the differential equation

dy
dx

= icothw(x,y).

If the complex solutions of the above equation are of the form u(x,y) = const
then u = u(x,y) is a harmonic map. The metric is given by the formula

eF(R,S) =
1

uzūz
.

The above analysis was under the assumption that the λ (z) = 0. In gen-
eral, it is easy to deduce that a harmonic diffeomorphism u : M→ N between
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Riemann surfaces, with nonvanishing Hopf differential e−λ (z)dz2, is a solution
of the Beltrami equation,

∂z̄u
∂zu

= µ(z, z̄) = e−2ω+i Imλ (z),

where
∆ω =−2KNe−Reλ sinh2ω,

and KN is the curvature of the surface N.

4 Constant curvature spaces

In this section we consider the case when N is of constant curvature KN . The
formulation, used in this paper, is taken from [3]. The first kind elliptic inte-
gral F(φ |n) and the Jacobi elliptic function sn(v|n) are defined by the formula

F(φ |n) = v =
∫ x

0

dt√
(1− t2)(1−nt2)

= sn−1(x|n) (3)

where
x = sinφ = sn(v|n).

The elliptic sinh-Gordon equation is

∆ω =−2KN sinh2ω, where KN =±1,0.

Consider next a one-soliton solution of the above equation

ω = ω(γη−δξ ), γ = ρ cosτ and δ = ρ sinτ.

Let

C =
(
ω
′
0
)2

+
4KN

ρ2 sinh2
ω0, ω

′
0 = ω

′(Y0), ω0 = ω(Y0), m = 1+
4KN

Cρ2 ,

and

M = 1+
4KN

Cρ2 cos2
τ =

m+ tan2 τ

1+ tan2 τ
.
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Then, after a lengthy computation, one can find that

ω = log
sd(ε
√

Cm(Y −Y0)+ v0| 1m)+
√

mnd(ε
√

Cm(Y −Y0)+ v0| 1m)
2
√

m

and

R−R0 = α(X−X0)+

−α
(m−1) tanτ

m+ tan2 τ

(
Π(

m(1+ tan2 τ)

m+ tan2 τ
,
ω ′(Y )√

Cm
|m)−Π(

m(1+ tan2 τ)

m+ tan2 τ
,

ω ′0√
Cm
|m)

)
(4)

where Π(n,x|m) is the elliptic integral of the third kind. Also,

S−S0 =
α√
CM

(
arctanh

ω ′(Y )√
CM
− arctanh

ω ′0√
CM

)
(5)

and

eF =
4M

(m−1)α2ρ2 cosh2
Σ
,

where

Σ =

√
CM
α

(S−S0)+ arctanh
ω ′0√
CM

. (6)

Note that the metric on N is of constant curvature and that the results in Sec-
tion 4 cover all the cases of positive, negative and zero constant curvature in a
unified formulation.

5 Explicit solutions

This Section focuses on the explicit solution of the harmonic map problem in
the influential work [4] that generalizes the solutions in [1, 5]. The solution is
a quasi-conformal harmonic diffeomorphism between hyperbolic planes. In
this section we show that the calculations of the paper [4] correspond to the
one soliton solution of the sinh-Gordon equation.

Consider the strip model for hyperbolic plane. In [4] the authors find a
harmonic map which takes the form R(x,y) = αx+ h(y) and S(x,y) = g(y).
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Let a = h′(π

2 ) and b = g′(π

2 ). They show that ∂R
∂y = a2 sin2 g and cotg = z,

where ∫ z(y)

0

dz√
α2z4 + c2z2 +b2

=
π

2
− y,

and c2 = α2 +b2 +a4. They extend g,h to [0,π] such that

h(y) = h(π)−h(π− y), g(y) = π−g(π− y),

and they prove that there are appropriate constants a,b such that the harmonic
map is a quasi-conformal harmonic diffeomorphism between the hyperbolic
strips.

The same harmonic map can be recovered by the method presented earlier.
More precisely, let x = X ,y = Y,X0 = 0,Y0 = π/2,

w1 =
1

α
√

2

√
c2−

√
c4−4α2b2, w2 =

1
α
√

2

√
c2 +

√
c4−4α2b2.

Consider

ρ =
2

α

√
w2

2−w2
1

, tanτ =−

√
w2

2−1
1−w2

1
, ω
′
0 = 0,

C =−α
2w2

1, M =
1

w2
1
, m =

w2
2

w2
1
, Σ = i(S− π

2
),

We observe that √
(w2

2−1)(1−w2
1) =

a2

α
.

Considering the choice of the parameters in [4], we find that

K′ = αw2
π

2
=
∫ π

2

0

dθ

1− (1− w2
1

w2
2
)sin2

θ

where K′ is the quarter period of the elliptic Jacobi functions, see equations
(16.1.1) and (16.1.2) of [3]. We find that
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∂S
∂y

=
αw2

2 dn(αw2y|1− w2
1

w2
2
)

w2
2 +(1−w2

2)sn2(αw2y|1− w2
1

w2
2
)
,

and

∂R
∂y

=
a2 sn2(αw2y|1− w2

1
w2

2
)

w2
2 +(1−w2

2)sn2(αw2y|1− w2
1

w2
2
)
.

A lengthy but standard computation can show that this result is identical with
the result in [4].

We find that
∂R
∂Y

=−4sin τ cos τ

αρ2
1
Φ

= a2 sin2 S

and (
∂S
∂Y

)2

= − 16tan2 τ

(tan2 τ +1)2
α2ρ4

1
Φ2 +

4
(
tan2 τ−1

)
(tan τ2 +1)ρ2Φ

+α2

= α2 +(b2 +a4−α2)sin2 S−a4 sin4 S,

where Π(n,x|m) is the elliptic integral of the third kind. Also,

S− π

2 = iarctanh
(

w1
ω ′(Y )√

C

)
, (7)

eF =
1

sin2 S
,

and

ω ′(Y )√
C

= cd(αw2i(Y − π

2
)+ v0|

w2
1

w2
2
) =−sn(αw2i(Y − π

2
)|w

2
1

w2
2
)

=−isc(αw2(Y −
π

2
)|1− w2

1

w2
2
) = i

w2

w1
cs(αw2Y |1− w2

1

w2
2
).

Thus, we find that

S = cot−1
(

w2cs(αw2Y |1− w2
1

w2
2
)

)
,

and this result coincides with the result in [4].
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Abstract. Consider the very general setting of a doubling space associated
with a non-negative self-adjoint operator, whose heat kernel satisfies certain
Gaussian regularity. Without any algebraic or differential structure we estab-
lish distributions, polynomials and the notion of vanishing moments.

1 Introduction

Traditionally Harmonic analysis takes place on the Euclidean space Rn. Al-
though Rn is not enough for covering many problems raising from mathemat-
ics or other sciences. This gives a natural motivation in Functional analysis’
community to work on manifolds, groups, metric spaces and other abstract
settings.

The scientific area of analysis away from the Euclidean space is usually
referred as “Geometric analysis", “Analysis on metric spaces", “Global anal-
ysis" or “Analysis on manifolds", since the first progress historically has been
succeeded on manifolds. This area demands skills and knowledges from sev-
eral mathematical disciplines and presents several difficulties while acting on
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it, which makes the whole procedure very attractive. Especially when one
needs to introduce notions that are well known on Rn, but the main ingredi-
ents of them are just absent. In such a case the researcher has to construct
roads that may be totally different by the standard ones by viewing behing the
lines of the known definitions and notions.

Our department is the leading institute of our Country in the area of anal-
ysis on metric spaces. Mandouvalos and Marias offered at the department the
know-how and built master courses in this discipline. In this sector Cleant-
hous, Fotiadis, Papageorgiou and the author, provided numerous contributions
in the literature. Indicatively we refer the reader to [4, 5, 10, 11, 12, 13, 14,
15, 16, 17, 18, 27, 28, 29, 30, 31, 32, 33, 34].

The very last years significant progress has been succeed in the direction
of transfer fundamental notions of analysis to a very general setting that we
will focus on this paper [5, 7, 8, 9, 17, 18, 19, 20, 24, 25, 26]. Many initial an-
alytic objects have already been generalized in our framework, but at the same
time there are many open problems related with analysis and its applications.

The purpose of this paper and the corresponding talk(s) is to present how
we can generalize distributions, polynomials, convolution-type actions, func-
tion spaces and the notion of vanishing moments on a very broad set-up, under
the absence of differential and algebraic structures. We will work on a metric
space associated with an operator. The prototype is the setting of a manifold,
generalizing the classical settings of Euclidean space Rn, the sphere and many
more settings.

The present article is a follow up of author’s paper [15] in the proceedings
of the First Congress of Greek Mathematicians took place in Athens in June
of 2018, where we tried to give an introduction to analysis on metric spaces
associated with operators. The definitions of distributions and polynomials
associated with operators already presented in [15] will be repeated here and
the notion of vanishing moments based on the paper [19] will be presented
here.

2 Presentation of the setting

We start by presenting the general underlying setting.
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Let (M,ρ) be a metric space and µ a positive measure satisfying the as-
sumptions:

1o (Doubling volume property) There exists a constant c0 > 1 such that

0 < |B(x,2r)| ≤ c0|B(x,r)|< ∞, ∀x ∈M, r > 0. (1)

where |B(x,r)| := µ({y ∈M : ρ(x,y)< r}), for every x ∈M and r > 0.

2o (Operator) There exists a self-adjoint non-negative operator L, with do-
main a dense subset of L2(M), whose heat kernel pt(x,y) is Markov and
satisfies the upper bounds

pt(x,y)≤
c1 exp

(
− c2ρ2(x,y)

t

)
√
|B(x,

√
t)||B(y,

√
t)|

, ∀x,y ∈M, t > 0 (2)

and the Hölder continuity

|pt(x,y)− pt(x,y′)| ≤ c1

(
ρ(y,y′)√

t

)β exp
(
− c2ρ2(x,y)

t

)
√
|B(x,

√
t)||B(y,

√
t)|

, (3)

for some β > 0 and ∀x,y,y′ ∈M such that ρ(y,y′)≤
√

t and t > 0.

2.1 Examples

The setting is very broad covering some of the most classical spaces. The
fundamental example is the Euclidean space M = Rn, associated with the op-
erator L =−∆. The sphere Sn−1 of Rn associated with the standard Laplacian,
is also included in our study.

These two are the driving examples and our main purpose is to keep them
covered by our theory, while we build our framework. Let us list some more
examples and refer to [7, 5, 8, 15, 25] for more:

Example 1. (α) Riemannian manifolds with non-negative Ricci curvature,
associated with the Laplace-Beltrami operator.

(β ) Lie groups of polynomial volume growth, associated with sub-lapla-
cians.
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(γ) The upper hemisphere Sn−1
+ := {x = (x1, . . . ,xn) ∈Rn : ‖x‖= 1, xn >

0}
(δ ) The weighted unit ball, associated with a weighted Laplacian.
(ε) The weighted Simplex.
(στ) The interval associated with the Jacobi operator (the operator hav-

ing Jacobi polynomials as eigenvalues).

2.2 Challenge

As a summary we mention that on the above setting we only have a metric, a
measure and a suitable operator. The challenge is to:

Do analysis without derivatives, algebraic structure and Fourier transform.

3 Distributions associated with operators

Between the most significant objects in functional analysis is the class of tem-
pered distributions. We recall its definition on the Euclidean setting and we
will next explain how it could be generalized in our broad framework.

3.1 Tempered distributions on Rn

The class S ′(Rn) of tempered distributions is the space of continuous func-
tionals of the Schwartz functions S (Rn). Let us recall this class of test func-
tions first [22]:

Definition 1. We say that φ ∈S (Rn) when
(α) φ ∈ C ∞(Rn) and
(β ) for every ` ∈ N,

sup
x∈Rn

(
1+ |x|

)` max
|α|≤`

∣∣∂ α
φ(x)

∣∣< ∞. (4)

Remark 4. Note that:
(a) Proper functions f can be identified with distributions as

L f (φ) :=
∫
Rn

f (x)φ(x)dx, ∀φ ∈S (Rn). (5)
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(b) In the above sense it turns out that Lp(Rn) ⊂S ′(Rn), for every p ∈
[1,∞].

(c) The class of polynomials P(Rn) is contained -via (a)- in the class
S ′(Rn).

3.2 Distributions associated with operators

Our purpose is to generalize the class of tempered distributions in our general
setting. This means that we have to give a new class of test functions on
(M,ρ,µ,L) which should of course coincide with S (Rn) when M = Rn and
L is the Euclidean Laplacian.

The main problem here is that Definition 1 relies on the notion of deriva-
tives, something that we don’t have in our disposal in our framework. The
inspiration of how to overcome the lack of derivatives comes from our exam-
ples. The operator L in all the examples we presented, contains the differen-
tiability inside its DNA. So as a replacement of the (α) condition for instance,
we are leaded to assume that the (iterative) powers of L, of any order, can act
to the test function. Then we shall use these actions as a replacement of the
derivatives appearing on the claim (β ). In claim (β ) the norm |x| is missing
here (we don’t even have a vector space). Therefore |x| should be understood
as the distance of the arbitrary point x to the “origin", or another fixed point
of M.

The above conversation justifies the following definition:

Definition 2. [24] Let (M,ρ,µ,L) be a space with µ(M) = ∞. We say that
ϕ : M→ R is a test function associated with the operator L; ϕ ∈S (L) when

(α) ϕ ∈ Domain(Lm), for every m ∈ N and
(β ) for every ` ∈ N,

P`(ϕ) := sup
x∈M

(
1+ρ(x,x0)

)` max
0≤m≤`

∣∣Lm
ϕ(x)

∣∣< ∞, (6)

for some fixed point x0 ∈M.
All the continuous functionals of S (L) will consist the class of distribu-

tions associated with the operator L, denoted by S ′(L).

Remark 5. Some basic remarks on S (L) and S ′(L) are in order.
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(a) Thanks to the triangle inequality of ρ , the definition of S (L) (and
consequently of S ′(L)), is independent of the choice of the fixed point x0.

(b) When M = Rn and L = −∆, the class S ′(L) coincides with the class
of tempered distributions S ′(Rn), as it was our initial purpose. This is true
for the case of torus, sphere and ball as well [24].

3.3 Conclusion

At this section we presented how we can generalize the notion of distributions,
under the lack of derivatives, so:

Operator L performs as a substitute of derivatives.

4 Polynomials associated with operators

Polynomials2 are between the most important objects in mathematics. Almost
every branch of mathematics (and not only), is interested in polynomials for
many reason. We explain here how we introduce generalized polynomials
associated with the operator L [19].

A polynomial on R1 (for simplicity) is a function of the form

p(x) = α0 +α1x+α2x2 + · · ·+αmxm,

for some m ∈N. This definition is deeply based on the algebraic structure and
looks quite unexpectable to be extended on general metric spaces. Let us see
how we overcome the lack of algebraic structure in this case.

On Remark 4 we saw that the polynomials on Rn can be identified with
distributions. On the other hand on Remark 5 we mentioned that the class
of distributions S ′(L) for M = Rn and L = −∆ coincides with S ′(Rn), the
class of tempered distributions. All the above give us the “right" to search for
generalized polynomials inside the class of distributions associated with the
operator L.

Of course the problem of the lack of algebraic structure remains. As we
did for the class of test functions, we have to get inspiration by the special

2This paragraph is copied from authors’ article[15]
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examples. As we mentioned again, L includes differentiability in all the ex-
amples we presented. Then we have to see that a polynomial on R is a smooth
function, such that after a sufficient number of derivatives, it just...vanishes.

All these in the language of operators will be summarized in the following
definition.

Definition 3. [19] We say that the distribution f ∈ S ′(L) is a generalized
polynomial associated with the operator L; f ∈P(L), when there exists an
integer m ∈ N such that Lm f ≡ 0; i.e. Lm f is the zero distribution.

Remark 6. Let us collect some remarks about the class of generalized poly-
nomials associated with operators.

(a) The coincidence Lm f ≡ 0 is of course in the sense of distributions;
〈Lm f ,ϕ〉 := 〈 f ,Lmϕ〉= 0, for every ϕ ∈S (L).

(b) When the space M is non-compact (µ(M) = ∞) then the only general-
ized polynomial on L2(M), is the zero distribution (as it should) [19].

(c) In [19] we proved that when M = Rn associated with the Laplacian,
then P(L) is exactly the class of algebraic polynomials (as we had to prove
in order our definition to be justified).

(d) The introduction of polynomials associated with operators opens im-
mediately a large area of questions on which standard properties of polyno-
mials on Rn (or over other rings) remain true on general metric spaces.

4.1 Conclusion

At this section we presented how we can generalize the notion of polynomials,
under the lack of algebraic structure, so:

Operator L performs as a substitute of algebraic structure.

5 Vanishing moments associated with operators

In classical analysis we often need to work with test functions having van-
ishing moments. For example function spaces are distinguished in inhomo-
geneous and homogeneous with the second ones being spaces of functionals
of test functions with vanishing moments of any order. We shall present this
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class on Rn (as always) and later we will see how we can extend it on the
general setting (as always).

5.1 The class S∞(Rn)

We say that the Schwartz function φ belongs to the class S∞(Rn) when∫
Rn

xα
φ(x)dx = 0, for every α ∈ Nn

0. (7)

The above is equivalent with ∂ α φ̂(0) = 0, for every multi-index α ∈ Nn
0. The

last is a priori true when the Fourier transform of φ is supported away from
the origin.

5.2 The class S∞(L)

A first look in (7) makes it difficult to believe that we can generalize it in the
general setting since the terms xα = xα1

1 · · ·xαn
n are of course absent away from

Rn and one cannot be very optimistic.
If we look from another point of view the definition of the class S∞ we

can see that it contains Schwartz functions that belong to the kernel of any
polynomial, acting on them as a tempered distribution. This is just another re-
alization of (7). In the general setting we are well equipped with polynomials
and we will be driven by them to the correct definition of the class S∞(L):

Definition 4. [19] We say that the function ϕ ∈ S (L) belongs to the class
S∞(L) when for every ν ∈N, there exists a test function ψν ∈S (L) such that

ϕ = Lν
ψν . (8)

In other words the above definition says that for every ν ∈ N the function
L−νϕ =: ψν , is a well-defined test function. By (b) of Remark 6 it turns out
that ψν is uniquely defined.

Remark 7. Let us close by presenting some of the properties [19] of the class
we just introduced.

(a) Let us see the behaviour of the action of a polynomial f ∈P(L) on
a test function ϕ ∈S∞(L). Based on the corresponding situation on Rn, we
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expect the action 〈 f ,ϕ〉 to be just zero. Indeed; since f ∈P(L), there exists
an integer m ∈ N such that Lm f to be the zero distribution. Since ϕ ∈S∞(L),
there exists a unique ψm ∈S (L) such that ψm = L−mϕ . Then we conclude on
what we need:

〈 f ,ϕ〉= 〈 f ,Lm
ψm〉= 〈Lm f ,ψm〉= 0.

(b) The topology in S∞(L) is defined as follows: For every ` ∈ N, we set

P∗
` (ϕ) := sup

x∈M

(
1+ρ(x,x0)

)` max
−`≤m≤`

∣∣Lm
ϕ(x)

∣∣< ∞. (9)

(c) Negative powers of the operator can be extended from the class S∞(L)
by duality as follows: Let ν ∈ N and f ∈S ′(L). We define L−ν f by

〈L−ν f ,ϕ〉 := 〈 f ,L−ν
ϕ〉, for every ϕ ∈S∞(L). (10)

The action above is well-defined on S∞(L). Moreover it is a continuous map-
ping as well; Since f ∈S ′(L) by (9) and (6) we extract that for some k ∈N it
holds∣∣〈L−ν f ,ϕ〉

∣∣≤‖ f‖S ′Pk(ψν)≤‖ f‖S ′P∗
max(ν ,k−ν)(ϕ), for every ϕ ∈S∞(L),

which means that L−ν f belongs to S ′
∞(L).

(d) Some more results from [19] are: (i) S∞(L) is a Fréchet space, (ii)
when M = Rn we recover the class of Schwartz functions with vanishing mo-
ments of any order and (iii) as in the Euclidean case we prove that S ′

∞(L) =
S ′(L)/P(L).

5.3 Conclusion

At this section we presented how we can generalize the notion of vanishing
moments, under the lack of algebraic structure, so:

Operator L performs as a substitute of algebraic structure
defining vanishing moments.



124 A.G. Georgiadis, Analysis on metric spaces associated with operators II

6 Acknowledgement

The great idea for celebrating the 90 years of our department gave us the
opportunity of a reunion. I’m looking forward to celebrate the first century of
the dept. too! Let me also thank the organizing committee for inviting me at
this celebration.

Bibliography

[1] G. K. Alexopoulos, Random walks on discrete groups of polyno-
mial volume growth. Ann. Probab. 30 (2002), no. 2, 723—801.

[2] G. K. Alexopoulos, Sub-Laplacians with drift on Lie groups of
polynomial volume growth. Mem. Amer. Math. Soc. 155 (2002),
no. 739, x+101 pp.

[3] I. Castillo, G. Kerkyacharian, D. Picard, Thomas Bayes’ walk on
manifolds, Probab. Theory Relat. Fields, 158 (2014), no. 3-4, 665–
710.

[4] G. Cleanthous and A. Georgiadis, Riesz means via heat kernel
bounds. Bull. Hellenic Math. Soc. 60 (2016), 1-10.

[5] G. Cleanthous, A. Georgiadis, G. Kerkyacharian, P. Petrushev, D.
Picard, Kernel and wavelet density estimators on manifolds or more
general metric spaces. Arxiv: 1805.04682v1.

[6] R. Coifman and G. Weiss. Extensions of Hardy spaces and their
use in analysis. Bull. Amer. Math. Soc., 83(4):569–645, 1977.

[7] T. Coulhon, G. Kerkyacharian, and P. Petrushev. Heat kernel gen-
erated frames in the setting of Dirichlet spaces. J. Fourier Anal.
Appl., 18(5):995–1066, 2012.

[8] S. Dekel, G. Kerkyacharian, G. Kyriazis, and P. Petrushev. Com-
pactly supported frames for spaces of distributions associated with
nonnegative self-adjoint operators. Studia Math., 225(2):115–163,
2014.



90 years School of Mathematics A.U.Th. 125

[9] S. Dekel, G. Kerkyacharian, G. Kyriazis, and P. Petrushev. Hardy
spaces associated with non-negative self-adjoint operators. ArXiv
e-prints, Sept. 2014.

[10] A. Fotiadis and A. Georgiadis, Riesz means on discrete groups and
graphs. Potential Anal. 38 No. 1 (2013), 21-30.

[11] A. Fotiadis, M. Marias, Multipliers on rank one locally symmetric
spaces. Math. Z. 265 (2010), no. 2, 277—284.

[12] A. Fotiadis, N. Mandouvalos, M. Marias, Schrödinger equations on
locally symmetric spaces. Mathematische Annalen, to appear.

[13] A. Fotiadis, E. Papageorgiou, Littlewood-Paley-Stein operators on
Damek-Ricci spaces. arxiv: 1706.09743

[14] A. Fotiadis, E. Papageorgiou, Estimates of the derivatives of the
heat kernel on symmetric and locally symmetric spaces, and appli-
cations. arxiv: 1704.01359

[15] A. G. Georgiadis. Analysis on metric spaces associated with opera-
tors. Proceeding of the First Congress of Mathematicians, submit-
ted.

[16] A. G. Georgiadis. H p-bounds for spectral multipliers on Rieman-
nian manifolds. Bull. Sci. Math., 134(7):750–766, 2010.

[17] A. G. Georgiadis and M. Nielsen. Pseudodifferential operators on
spaces of distributions associated with non-negative self-adjoint op-
erators. J. Fourier Anal. Appl., 23 No 2 (2017), 344-378.

[18] A. Georgiadis, and M. Nielsen, Spectral multipliers on spaces of
distributions associated with non-negative self-adjoint operators. J.
Approx. Theory, 234 (2018), 1-19.

[19] A. Georgiadis, G. Kerkyacharian, G. Kyriazis and P. Petrushev, Ho-
mogeneous Besov and Triebel-Lizorkin spaces associated to non-
negative self-adjoint operators. J. Math. Anal. Appl., 449 No 2
(2017), 1382–1412.



126 A.G. Georgiadis, Analysis on metric spaces associated with operators II

[20] A. Georgiadis, G. Kerkyacharian, G. Kyriazis and P. Petrushev,
Atomic and molecular decomposition for homogeneous spaces
of distributions associated to non-negative self-adjoint operators.
Arxiv: 1805.01444v1.

[21] L. Grafakos, Modern Fourier analysis. Third edition. Graduate
Texts in Mathematics, 250. Springer, New York, 2014. xvi+624 pp.

[22] L. Grafakos, Classical Fourier analysis. Third edition. Graduate
Texts in Mathematics, 249. Springer, New York, 2014. xviii+638
pp.

[23] G. Kerkyacharian, S. Ogawa, P. Petrushev, and D. Picard. Regu-
larity of Gaussian Processes on Dirichlet spaces. Constr Approx
(2018) 47: 277.

[24] G. Kerkyacharian and P. Petrushev. Heat kernel based decomposi-
tion of spaces of distributions in the framework of Dirichlet spaces.
Trans. Amer. Math. Soc., 367(1):121–189, 2015.

[25] G. Kerkyacharian, P. Petrushev, Y. Xu, Gaussian bounds for the
weighted heat kernels on the interval, ball and simplex, preprint.
arXiv:1801.07325

[26] L. Liu, D. Yang, and W. Yuan. Besov-type and Triebel–
Lizorkin-type spaces associated with heat kernels. Collect. Math.,
67(2):247–310, 2016.

[27] N. Mandouvalos, Scattering operator, Eisenstein series, inner prod-
uct formula and "Maass-Selberg” relations for Kleinian groups.
Mem. Amer. Math. Soc. 78 (1989), no. 400, iv+87 pp

[28] E. B. Davies, N. Mandouvalos, Heat kernel bounds on hyperbolic
space and Kleinian groups. Proc. London Math. Soc. (3) 57 (1988),
no. 1, 182—208.

[29] N. Mandouvalos, Relativity of the spectrum and discrete groups
on hyperbolic spaces. Trans. Amer. Math. Soc. 350 (1998), no. 2,
559—569.



90 years School of Mathematics A.U.Th. 127

[30] N. Lohoué, M. Marias, Multipliers on locally symmetric spaces. J.
Geom. Anal. 24 (2014), no. 2, 627-–648.

[31] I. Kyrezi, M. Marias, H p-bounds for spectral multipliers on graphs.
Trans. Amer. Math. Soc. 361 (2009), no. 2, 1053—1067.

[32] M. Marias, Lp estimates on functions of Markov operators. Proc.
Amer. Math. Soc. 130 (2002), no. 5, 1533—1537.

[33] E. Papageorgiou, Oscillating multipliers on rank one locally sym-
metric spaces, arxiv: 1809.08808.

[34] E. Papageorgiou, Oscillating multipliers on symmetric spaces and
locally symmetric spaces, arxiv: 1811.03313.

[35] N. Th. Varopoulos, L. Saloff-Coste, T. Coulhon, Analysis and
geometry on groups. (English summary) Cambridge Tracts in
Mathematics, 100. Cambridge University Press, Cambridge, 1992.
xii+156 pp. ISBN: 0-521-35382-3





90 years School of Mathematics A.U.Th. 129

On completely monotonic
and related functions

Stamatis Koumandos
Department of Mathematics and Statistics, University of Cyprus,

P.O. Box 20537, 1678 Nicosia, Cyprus
skoumand@ucy.ac.cy

Abstract. We deal with several classes of functions related to completely
monotonic functions, such as, absolutely monotonic functions, logarithmically
completely monotonic functions, Stieltjes functions and Bernstein functions.
We present several examples and applications to special functions. In partic-
ular, we study complete monotonicity of the remainders of several asymptotic
expansions. In addition, we show that several classes of functions defined
by certain integral transforms can be characterized via the order of complete
monotonicity of the remainder in their asymptotic expansion.

1 Introduction and results

Completely monotonic functions have a long history, going back to the semi-
nal work of F. Hausdorff [21] who called such functions "total monotone". He
also discovered their close relation with moment sequences of finite positive
measures on [0,1]. Let us recall the definition.
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Definition 1. A function f : (0, ∞)→ R is called completely monotonic if f
has derivatives of all orders and satisfies

(−1)n f (n)(x)≥ 0, for all x > 0 and n = 0,1,2, . . . (1)

The class of completely monotonic functions is denoted by C .
J. Dubourdieu [17] proved that if a non-constant function f is completely

monotonic on (0, ∞), then strict inequality holds in (1). See also [22] for a
simpler proof of this result.

S. N. Bernstein, see [13] and [53, pp. 160–161] gave the following char-
acterization of completely monotonic functions.

Theorem 1. The function f is completely monotonic on (0,∞) if and only if

f (x) =
∫

∞

0
e−xtdµ(t), (2)

where µ is a non-negative Borel measure on [0,∞) such that the integral con-
verges for all x > 0.

Completely monotonic functions emerge in many different branches of
mathematics and have some remarkable applications. They are of importance
in probability theory [10], [14], [18], [26], potential theory [8], mathematical
physics [16], numerical analysis [54], asymptotic analysis [19], [27], [28],
[32], [33], [37], [35] and combinatorics [5]. For a detailed collection of the
most significant properties of completely monotonic functions, we refer the
reader to the classical books of D. Widder [53] and W. Feller [18]. The
articles [7] and [31] contain various results demonstrating their relationship
with several other classes of functions as well as some historical comments.

Motivated by some applications on asymptotic expansions of certain spe-
cial functions, some interesting subclasses of completely monotonic functions
have been introduced in [32].

Definition 2. Let α ≥ 0. A function f : (0, ∞)→ R is called
completely monotonic function of order α if xα f (x) is completely monotonic
on (0, ∞).
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There is an analogue of Bernstein’s theorem mentioned above, for com-
pletely monotonic functions of positive order. We recall that the Riemann-
Liouville fractional integral Iα(µ)(t) of order α > 0, of a Borel measure µ on
[0,∞) is defined by

Iα(µ)(t) =
1

Γ(α)

∫ t

0
(t− s)α−1 dµ(s).

The following characterization has been obtained in [32].

Theorem 2. The function f : (0, ∞)→ R is completely monotonic of order
α > 0 if and only if f is the Laplace transform of a fractional integral of
order α of a non-negative Radon measure µ on [0, ∞), that is,

f (x) =
∫

∞

0
e−xt Iα(µ)(t)dt.

and the integral converges for all x > 0.

This characterization takes a simpler form when α is a positive integer.
We need first to introduce the following classes of functions.

Definition 3. Let A0 denote the set of non-negative Borel measures µ on [0,∞)

such that
∫

∞

0
e−xs dµ(s) < ∞ for all x > 0. Let A1 denote the set of functions

t 7→ µ([0, t]), where µ ∈ A0. For n ≥ 2, let An denote the set of n− 2 times
differentiable functions ξ : [0,∞)→R satisfying ξ ( j)(0) = 0 for j≤ n−2 and

ξ
(n−2)(t) =

∫ t

0
µ([0,s])ds for some µ ∈ A0.

With this definition the characterization can be stated as follows.

Proposition 1. Let r be a positive integer. A function f : (0,∞)→ R is com-
pletely monotonic of order r if and only if

f (x) =
∫

∞

0
e−xt

ξ (t)dt

for some ξ ∈ Ar.
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Let us give a non trivial example of a completely monotonic function of
positive order. Consider the remainder rn(x) in the asymptotic expansion of
the logarithm of Euler’s gamma function.

log Γ(x)

=
(

x− 1
2

)
logx− x+

1
2

log(2π)+
n

∑
k=1

B2k

(2k−1)2k
1

x2k−1

+(−1)n rn(x), (3)

where Bk are the Bernoulli numbers defined by

t
et −1

=
∞

∑
k=0

Bk
tk

k!
= 1− t

2
+

∞

∑
j=1

B2 j
t2 j

(2 j)!
, |t|< 2π.

The remainder rn(x) in the above asymptotic expansion has the form

rn(x) =
∫

∞

0
e−xt t2nVn(t)dt,

where

Vn(t) =
∞

∑
k=1

2
(t2 +4π2 k2)(2π k)2n .

(cf.[31]).
It can be shown the following result. See [27] and also [31] for a simpler

proof.

Proposition 2. (i) The remainder rn(x) in the above asymptotic expansion is
a completely monotonic function of order n on (0, ∞), for all n≥ 0.
(ii) The following inequality holds true

0 < rn(x)< (−1)n B2n+2

(2n+1)(2n+2)
1

x2n+1 ,

for all x > 0 and n≥ 0.
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Results of this type have been obtained for asymptotic expansions of sev-
eral other special functions, such as, multiple gamma functions, multiple zeta
functions and polygamma functions. See [28], [29], [31], [32], [33], [34],
[36], [37].

An important counterpart of completely monotonic functions are the Bern-
stein functions.

Definition 4. A function f : (0, ∞)→ (0, ∞) is called a Bernstein function if
f has derivatives of all orders and f ′ is completely monotonic on (0, ∞). The
class of Bernstein functions is denoted by B.

These functions play an important role in the theory of convolution semi-
groups of measures supported on the positive half line and related functional
calculus, see [44], [45]. It is easy to see, for example, that x 7→ xt/(x+ t) is a
Bernstein function on (0, ∞) for all t > 0.

There is a characterization of Bernstein functions corresponding to Theo-
rem 1 (cf. [3, p. 84]):

Theorem 3. f : (0, ∞)→ (0, ∞) is a Bernstein function if and only if

f (x) = ax+b+
∫

∞

0
(1− e−xt)dν(t), (4)

where a, b are nonnegative constants and ν , called the Lévy measure, is a
positive measure on (0, ∞) satisfying∫

∞

0

t
1+ t

dν(t)< ∞. (5)

The expression (4) is called the Lévy-Khinchine representation of f . It is
easy to see that the condition (5) is equivalent to∫ 1

0
t dν(t)< ∞ and

∫
∞

1
dν(t)< ∞. (6)

Since a Bernstein function is positive and increasing, it has a nonnegative limit
limx→0+ f (x) := f (0+). It follows from the expression (4) that b = f (0+).
Suppose that the conditions (6) are fulfilled. Since the function (1− e−u)/u
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is bounded on 0 < u < ∞, the Lebesgue dominated convergence Theorem
implies

lim
x→∞

1
x

∫
∞

0
(1− e−xt)dν(t)

= lim
x→∞

∫ 1

0

1− e−xt

xt
t dν(t)+ lim

x→∞

1
x

∫
∞

1
(1− e−xt)dν(t) = 0.

Hence in the representation (4) we have a = lim
x→∞

f (x)
x

and in particular f (x) =

O(x) as x→ ∞.
An interesting example of a Bernstein function is associated with Ra-

manujan’s θ sequence. Let the sequence θ(n) be defined by θ(0) = 1/2 and
for n = 1,2, . . .

en

2
=

n−1

∑
j=0

n j

j!
+

nn

n!
θ(n).

A famous problem due to Ramanujan is to prove that θ(n) satisfies the esti-
mates 1/3 < θ(n) ≤ 1/2, for n = 0,1,2 . . .. This has been proved on several
occasions, see [12] for details. Among the mathematicians who provided, in-
dependently, a complete solution to Ramanujan’s problem were Szegő [50]
and Watson [51]. They showed in addition that the sequence

(
θ(n))∞

n=0 is
strictly decreasing. An important step in the approach of Szegő and Watson to
the Ramanujan’s problem for the sequence

(
θ(n))∞

n=0, is that for all positive
integers n we have

θ(n) = 1+
n
2

[∫ 1

0
(ue1−u)n du−

∫
∞

1
(ve1−v)n dv

]
. (7)

This expression is used as the definition of the function θ(n) for all positive
real numbers n.

In [30] it is shown the following result.

Theorem 4. The function θ(x) is completely monotonic on [0,∞). More
specifically, for all positive real numbers x > 0, we have

θ(x) =
1
3
+

1
2

∫
∞

0
e−xt

ϕ(t)dt,
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where

ϕ(t) :=
v(t)

(v(t)−1)3 −
u(t)

(1−u(t))3 , t > 0

and the functions v(t), u(t) are uniquely determined by the conditions

ue1−u = e−t , ve1−v = e−t , 0≤ u≤ 1≤ v.

It can be verified that ϕ(t)> 0 for all t ≥ 0.
Let us now define the function

λ (x) := x
(
θ(x)− 1

3
)
, x≥ 0.

The following is also obtained in [30].

Theorem 5. The function λ (x) is a Bernstein function on [0, ∞) and its Lévy-
Khinchine representation is given by

λ (x) =−1
2

∫
∞

0
(1− e−xt)ϕ

′(t)dt, for all x≥ 0.

We also find that the asymptotic behavior of θ(x) is

θ(x)∼ 1
3
+

4
135x

− 8
2835x2 + . . . as x→ ∞.

There are some other subclasses of completely monotonic functions that are
of importance in applications.

Definition 5. A function f : (0, ∞)→ (0, ∞) is called logarithmically com-
pletely monotonic if f has derivatives of all orders and−(log f )′ is completely
monotonic on (0, ∞).

Applying Leibniz’s rule and induction it can be shown that every logarith-
mically completely monotonic function is completely monotonic. The converse
need not be true. Consider, for example, the function f (x) = e−x + e−2x.

A non trivial example is the following. For ν >−1 the function

xν/22−ν
{

Iν(
√

x)Γ(ν +1)
}−1
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is logarithmically completely monotonic on [0, ∞). Here, Iν(x) is the modified
Bessel function of the first kind. See [24]. This is a special case of a more
general result for entire functions, see [42].

The class of logarithmically completely monotonic functions is denoted
by L and was characterized by Horn [23] through Theorem 6. See also [6, 7].

Theorem 6. The following conditions are equivalent for a function f : (0,∞)→
(0,∞):

(i) f ∈L ,

(ii) f α is completely monotonic for all α > 0,

(iii) f 1/n is completely monotonic for all n = 1,2, . . .

An equivalent characterization of logarithmically completely monotonic
functions is therefore the following.

Theorem 7. A function f : (0, ∞) → (0, ∞) is logarithmically completely
monotonic if and only if

f (x) =
∫

∞

0
e−xt dµ(t),

where µ is an infinitely divisible measure on [0, ∞) and the integral converges
for all x > 0.

We recall that a measure µ on [0, ∞) is called infinitely divisible if for
each n ∈ N there exists a measure µn on [0, ∞) such that µ = µn ∗ µn ∗ . . . ∗
µn (n times), where ∗ denotes the convolution of measures.

We next consider a subclass of logarithmically completely monotonic func-
tions.

Definition 6. A function f : (0, ∞)→R is called a Stieltjes function, if it is of
the form

f (x) = c+
∫

∞

0

dµ(t)
x+ t

,

where c is a nonnegative constant and µ is a non-negative Borel measure on
[0, ∞) making the integral convergent for any x > 0.
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The class of Stieltjes functions is denoted by S . There is a fundamental
relationship between Stieltjes functions and Laplace transforms:

Theorem 8.
F(x) =

∫
∞

0

dµ(t)
x+ t

, for all x > 0,

where µ is a non-negative Borel measure on [0, ∞), if and only if

F(x) =
∫

∞

0
e−xt f (t)dt with f (t) =

∫
∞

0
e−ts dµ(s).

It is known that every completely monotonic density is infinitely divisible
(cf. [24]).

It is easily seen that every Stieltjes function has a holomorphic extension
to the cut plane A := C \ (−∞,0]. This turns out to be a useful observation.
For instance, the function

1
x(1+ x2)

=
∫

∞

0
e−xt (1− cos t)dt (8)

is obviously completely monotonic, but it cannot be a Stieltjes function, since
it has poles at ±i.

The following property is also remarkable.

Proposition 3. If f is a Stieltjes function, then for every α ∈ (0, 1) the function
f α is also a Stieltjes function.

Combining this Proposition with Theorem 6 (iii) we infer that every Stielt-
jes function is logarithmically completely monotonic. Of course, these two
classes do not coincide. Consider, for instance, the function

f (x) =
1

x2(1+ x2)
=
∫

∞

0
e−xt (t− sin t)dt .

This is logarithmically completely monotonic because

(− log f (x))′ =
2
x
+

2x
1+ x2 = 2

∫
∞

0
e−xt (1+ cos t)dt.

The function f (x) is not a Stieltjes function for the same reason as in the
example (8).

The following characterization of Stieltjes functions is proved in [1] and
there attributed to Krein.
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Theorem 9. A function f : (0, ∞)→ R is a Stieltjes function if and only if
f (x) ≥ 0 for all x > 0 and it has a holomorphic extension to the cut plane
A= C\ (−∞,0] satisfying Im f (x+ iy)≤ 0 for all y > 0.

Before proceeding any further let us give some interesting examples of
Stieltjes functions. See [2], [3], [9].

Proposition 4. The following functions are Stieltjes functions.

(i)
x logx

logΓ(x+1)
,

(ii) Φ(x) :=
[Γ(x+1)]1/x

x

(
1+

1
x

)x
, logΦ(x),

(iii)

h(x) : = (x+1)
[
e−
(

1+
1
x

)x]
=

e
2
+

1
π

∫ 1

0

tt (1− t)1−t sin(πt)
x+ t

dt,

(iv) For a < 1, x > 0,

Fa(x) : = ex x−a
∫

∞

x
e−t ta−1 dt

=
1

Γ(1−a)

∫
∞

0

1
x+ s

e−ss−a ds.

A real-variable characterization of Stieltjes functions has been given by
D. V. Widder [52].

Theorem 10. f is a Stieltjes function if and only if

dn

dxn

[
xn f (x)

]
is completely monotonic on (0, ∞) for all n = 0,1,2 . . ..

The following theorem describes how the above defined classes of func-
tions are related
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Theorem 11.

(i) If f ∈B \{0}, then
1
f
∈ C .

(ii) If f ∈S \{0}, then
1
f
∈B .

(iii) f ∈B, then
f (x)

x
∈ C .

In the next section we present some other characterizations of Stieltjes
functions in terms of their asymptotic expansions. We put this on a more
general setting by considering generalized Stieltjes functions.

Definition 7. Let λ be a positive real number. A function f : (0, ∞)→ R is
called a generalized Stieltjes function of order λ , if it is of the form

f (x) = c+
∫

∞

0

dµ(t)
(x+ t)λ

,

where c is a non-negative constant and µ is a non-negative Borel measure
on [0, ∞) making the integral convergent for all x > 0. The class of these
functions is denoted by Sλ .

We give some examples that emerge in the study of special functions. The
Pochhammer symbol (a)n is defined by

(a)0 = 1, (a)n = a(a+1) . . .(a+n−1) =
Γ(n+a)

Γ(a)
, n≥ 1

and Γ(x) is Euler’s gamma function. Let

2F1(a,b;c;x) =
∞

∑
n=0

(a)n(b)n

(c)nn!
xn

be the Gaussian hypergeometric function. If c > b > 0, then according to
Euler’s integral representation [4] we have

2F1(a,b;c;−x) =
Γ(c)

Γ(b)Γ(c−b)

∫ 1

0
tb−1(1− t)c−b−1(1+ xt)−a dt.
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Assume 0 < a≤ b. Then 2F1(a,b;c;−x) ∈Sa. Indeed,

2F1(a,b;c;−x) =
Γ(c)

Γ(b)Γ(c−b)

∫
∞

1

ϕ(t)
(x+ t)a dt,

where ϕ(t) = ta−c(t−1)c−b−1, t > 1.
Another interesting example is the following. For a > 0, the function

F(x) :=
1

Γ(a)

∫
∞

0
e−xt ta−1 (1+ t)c−a−1 dt,

is a solution of the differential equation

xy′′+(c− x)y′−ay = 0,

which is known as the confluent hypergeometric equation, see [4, 188-189].
For a+1 > c, we have F ∈Sa. This follows easily by applying the following
characterization, see [36, Lemma 2.1].

Proposition 5. A function f belongs to Sλ if and only if it is of the form

f (x) = c+
1

Γ(λ )

∫
∞

0
e−xs sλ−1

ϕ(s)ds,

where ϕ(s) =
∫

∞

0 e−ts dµ(t) for some non-negative Borel measure µ and c is
a non-negative constant. In the affirmative case µ is the measure representing
f .

Some properties of generalized Stieltjes functions are given next (cf. [25]).

Proposition 6. (i) If α < β then Sα ⊂Sβ

(ii)
⋂

α>0

Sα = {non-negative constants}

(iii)
⋃

α>0

Sα = C ,

where C is the class of completely monotonic functions and the closure is
taken with respect to the pointwise convergence on (0, ∞).

The class of generalized Stieltjes functions of order 2, S2, is of particular
interest because of the following.
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Theorem 12. Any generalized Stieltjes function of order 2 is logarithmically
completely monotonic, i.e. S2 ⊂L .

This theorem is a deep result. It was conjectured by Steutel in 1970 (see
[47, p. 43]) that all functions of the form∫

∞

0

t2

(x+ t)2 dσ(t),

where σ is a probability measure on (0,∞), are infinitely divisible completely
monotonic functions, or equivalently that all probability densities of the form
xg(x), with g being completely monotonic, are infinitely divisible. Further-
more, Steutel (see [48]) showed in 1980 that this conjecture would be veri-
fied provided another conjecture about the zero distribution of certain rational
functions in the complex plane would hold true. Kristiansen proved the latter
conjecture in 1994 (see [40]).

The result by Steutel and Kristiansen is easily extended to all generalized
Stieltjes functions of order 2 by a limit argument: If f ∈Sλ has the represen-
tation

f (x) =
∫

∞

0

dµ(t)
(x+ t)2 + c

then consider fn(x) =
∫

∞

0 dµn(t)/(x + t)2 with µn = µ({0})ε1/n + µ|(0,n) +
cn2εn (εa denoting the point mass at a) and notice that by Steutel and Kris-
tiansens result fn is in L . Since L is closed under pointwise convergence, f
is also in L . In this way Theorem 12 is proved. For some important applica-
tions and consequences of this Theorem we refer to [11]. Here we give some
simple examples.

Starting from the well-known formula, see for example [4, p. 615],

Γ(x+a)
Γ(x+b)

=
1

Γ(b−a)

∫
∞

0
e−xt e−at (1− e−t)b−a−1 dt, 0 < b−a,

we see that the ratio Γ(x+a)
Γ(x+b) is a completely monotonic function on (0, ∞) for

b > a. Let ψ(x) = Γ′(x)
Γ(x) be the digamma function. Using the formula [4, p.

26]

ψ(x) =−γ +
∫

∞

0

e−t − e−xt

1− e−t dt, (9)
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where x > 0 and γ is Euler’s constant, we get

ψ(x+b)−ψ(x+a) =
∫

∞

0
e−xt

ϕa,b(t)dt (10)

with

ϕa,b(t) :=
e−at − e−bt

1− e−t , ϕa,b(0) := b−a.

It follows from (10) that the function ψ(x+b)−ψ(x+a) is completely mono-
tonic on (0, ∞) for b > a and therefore the ratio Γ(x+a)

Γ(x+b) is a logarithmically
completely monotonic function on (0, ∞) for b > a. A refinement of this re-
sult is the following.

Proposition 7. The function

ψ(x+b)−ψ(x+a), 0 < a < b

is Stieltjes of order 2

To prove this, we first show that the function
ϕa,b(t)

t
is completely mono-

tonic on (0, ∞) for b > a. Indeed, let ga,b(t) :=
∞

∑
n=0

χ[a+n,b+n)(t). Then, we

have ∫
∞

0
e−xt ga,b(t)dt =

1
t

e−at − e−bt

1− e−t (11)

and this is completely monotonic. Using Proposition 5 and (10) we obtain

ψ(x+b)−ψ(x+a) =
∫

∞

0

ga,b(t)
(x+ t)2 dt, 0 < a < b.

In particular, the function ϕa,b(t) is infinitely divisible with respect to the
Laplace transform. This completes the proof of Proposition 7.

Since ϕa,b(t) is not completely monotonic, it follows that the function
ψ(x+b)−ψ(x+a), 0 < a < b, is not a Stieltjes function of order 1.

Another interesting example is related to the asymptotic expansion (3). It
reads as follows
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Proposition 8. We have

log Γ(x)−
(

x− 1
2

)
logx+ x− 1

2
log(2π) =

∫
∞

0

Q(t)
(x+ t)2 dt, (12)

where Q(t) = 1
2(t− [t]− (t− [t])2).

To prove this, observe that the function

Q(t) = 1
2(t− [t]− (t− [t])2)

is the 1-periodic extension to [0, ∞) of the function

q(t) :=
1
2

t (1− t), 0≤ t ≤ 1.

A simple calculation shows that∫
∞

0
e−ts Q(s)ds =

1
t3

( t
et −1

−1+
t
2

)
. (13)

On the other hand, we have

log Γ(x)−
(

x− 1
2

)
logx+ x− 1

2
log(2π) =

∫
∞

0

( t
et −1

−1+
t
2

) e−xt

t2 dt,

(14)
(cf. [4, p.28 ]). Combining (13) and (14) with Proposition 5 we obtain (12).

2 Characterizations and approximations of general-
ized Stieltjes functions

We first give some definitions and notations.
Let M ∗ denote the class of non-negative Borel measures on [0,∞) having

finite moments of all orders.
For µ ∈M ∗ the moments {sn(µ)} are defined by

sn(µ) =
∫

∞

0
xn dµ(x), n≥ 0.
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The class S ∗
λ

denotes those functions from Sλ corresponding to c = 0
and µ ∈M ∗.

We shall be concerned with asymptotic expansions in the complex plane.
Let Ω denote an unbounded domain of the complex plane, not containing

0. We recall that a function g defined in Ω has an asymptotic series

g(z)∼
∞

∑
k=0

bk

zk

if, for any n≥ 0

zn

(
g(z)−

n−1

∑
k=0

bk

zk

)
→ bn

as z→ ∞ within Ω. (In general the series ∑
∞
k=0 bk/zk may diverge.)

As the sets Ω we shall use sectors of the form

Sθ = {z ∈ C\{0}| |argz| ≤ θ},

where argz denotes the principal argument of z. For θ < π these sectors ex-
clude the negative real line.

The following result shows that any function in the class S ∗
λ

has an asymp-
totic expansion with a suitable representation for the remainders and this has
been obtained in [36].

Theorem 13. Suppose that

f (z) =
∫

∞

0

dµ(t)
(z+ t)λ

, z ∈ C\ (−∞,0],

where λ > 0 and µ ∈M ∗. Then the function zλ−1 f (z) has the asymptotic
expansion

zλ−1 f (z) =
n−1

∑
k=0

(λ )k

k!
(−1)k sk(µ)

zk+1 +(−1)n Rn(z),

for all n≥ 0, where, for z ∈ C\ (−∞,0],

Rn(z)z1−λ =
(λ )n

(n−1)!

∫ 1

0
(1− s)n−1

∫
∞

0

tn

(z+ st)n+λ
dµ(t)ds.
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For z ∈ Sπ−δ the remainder Rn satisfies the estimate

|Rn(z)| ≤
(λ )nsn(µ)

n!(sinδ )n+λ

1
|z|n+1 ,

and for z ∈ Sπ/2 the estimate

|Rn(z)| ≤
(λ )nsn(µ)

n!
1
|z|n+1 .

For z in the open right half plane the remainder has the representation

Rn(z) =
zλ−1

Γ(λ )

∫
∞

0
e−zt tλ−1

ξn(t)dt,

where ξn belongs to C∞([0,∞)), and satisfies ξ
( j)
n (0) = 0 for j ≤ n− 1 and

0≤ ξ
(n)
n (t)≤ sn(µ) for t ≥ 0.

We refer to [36] for the details of the proof of Theorem 13 and various
applications of it. It turns out that a converse of this theorem holds true (cf.
[36, Theorem 3.3]).

Theorem 14. Let λ > 0 and let {a j} be a real sequence.
Suppose that f : (0,∞)→ R satisfies the following: For any n ≥ 0 there

exists ξn ∈ An such that e−xttλ−1ξn(t) ∈ L1([0,∞)) for all x > 0 such that

xλ−1 f (x) =
n−1

∑
j=0

(λ ) j

j!
a j

x j+1 +(−1)n xλ−1

Γ(λ )

∫
∞

0
e−xt tλ−1

ξn(t)dt.

Then f has the representation

f (x) =
∫

∞

0

dµ(t)
(x+ t)λ

, for x > 0,

where µ ∈M ∗ and a j = (−1) j s j(µ) for j ≥ 0.

We note that the condition on ξ0 is understood as e−xttλ−1 ∈L 1(ξ0) and
the integral involving ξ0(t) is understood as∫

∞

0
e−xt tλ−1 dξ0(t).

Some interesting special cases of the above are given next.
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Corollary 1. Let λ ∈ (0,1] and let µ ∈M ∗([0,∞)). Then the asymptotic
expansion

xλ−1
∫

∞

0

dµ(t)
(x+ t)λ

=
n−1

∑
k=0

(λ )k

k!
(−1)k sk(µ)

xk+1 +(−1)n Rn(x)

holds for all n≥ 0, where Rn is a completely monotonic function of order n.

Corollary 2. Let λ ∈ (1,∞) and let µ ∈M ∗([0,∞)). Then, for any n≥ 0, the
asymptotic expansion

xλ−1
∫

∞

0

dµ(t)
(x+ t)λ

=
n−1

∑
k=0

(λ )k

k!
(−1)k sk(µ)

xk+1 +(−1)n Rn(x)

holds, where Rn is a completely monotonic function of order n−λ +1.

We note that in the case where λ > 1 and f (x) =
∫

∞

0

dµ(t)
(x+ t)λ

for some

µ ∈M ∗, if, for some n≥ 0 we have

xλ−1 f (x) =
n−1

∑
j=0

a j

x j+1 +(−1)nRn(x),

where Rn is completely monotonic of order n, then either
∫

∞

0

dµ(t)
tn+λ

= ∞ or

µ ≡ 0.
In view of the above, we have the following characterization for ordinary

Stieltjes functions.

Corollary 3. The following are equivalent for a function f : (0,∞)→ R:

(a) f has the representation

f (z) =
∫

∞

0

dµ(t)
z+ t

, z ∈ C\ (−∞,0],

where µ ∈M ∗.



90 years School of Mathematics A.U.Th. 147

(b) f admits an asymptotic expansion f (x) ∼ ∑
∞
k=0 ak/xk+1 on x > 0 in

which the remainder Rn in the expansion

f (x) =
n−1

∑
k=0

ak

xk+1 +(−1)nRn(x)

is completely monotonic of order n for any n≥ 0.

In the affirmative case, ak = (−1)ksk(µ), and f admits an asymptotic expan-
sion in Sπ−δ for any δ > 0.

There are some real-variable characterizations of generalized Stieltjes func-
tions. We need first to introduce some differential operators.

(i) For λ > 0 and n,k non-negative integers

[T λ
n,k( f )](x) := (−1)n x−(n+λ−1) dk

dxk

[
xn+k+λ−1 f (n)(x)

]
and (ii)

[cλ
k ( f )](x) := x1−λ dk

dxk

[
xλ−1+k f (x)

]
.

Lemma 1. The relation

T λ
n,k( f )(x) = (−1)n(cλ

k ( f )
)(n)

(x)

holds for any n,k ≥ 0 and x > 0.

See for details in [39].

Theorem 15. The following are equivalent for a function f ∈C∞((0,∞)):

(i) f is a generalized Stieltjes function of order λ .

(ii) cλ
k ( f ) is completely monotonic for all k ≥ 0.

(iii) T λ
n,k( f )≥ 0 for all n≥ 0 and all k ≥ 0.
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The proof of this result is given in the recently published paper [39]. See
also [46] for related considerations.

We are able to characterize, for any given positive integer N, those func-
tions f for which cλ

0 ( f ), . . . ,cλ
N( f ) are completely monotonic. We introduce

the classes C λ
N as

C λ
N = { f ∈C∞((0,∞)) |cλ

k ( f ) ∈ C for k = 0, . . . ,N}.

We need some notation from the theory of distributions. The standard refer-
ence is [43]. We recall that the action of a distribution u on a test function
ϕ (an infinitely often differentiable function of compact support in (0,∞)) is
denoted by 〈u,ϕ〉. The distribution ∂u is defined via 〈∂u,ϕ〉=−〈u,ϕ ′〉.

The following characterization is also obtained in [39].

Theorem 16. Let λ > 0 be given, and let N ≥ 1. The following properties of
a function f : (0,∞)→ R are equivalent.

(i) f ∈ C λ
N ;

(ii) f can be represented as

f (x) = c+
∫

∞

0
e−xssλ−1 dµ(s),

where c≥ 0, and µ is a non-negative Borel measure on (0,∞) for which
µk≡ (−1)ksk∂ kµ , (in distributional sense) is a non-negative Borel mea-
sure such that ∫

∞

0
e−xssλ−1 dµk(s)< ∞, k = 0, . . . ,N.

In the affirmative case,

cλ
k ( f )(x) = x1−λ

(
xλ−1+k f (x)

)(k)
=
∫

∞

0
e−xssλ−1 dµk(s)+(λ )k c

for k = 0, . . . ,N.

The representing measures µk are related as follows.
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Theorem 17. Suppose that f ∈ C λ
N , and let for k = 0, . . . ,N

cλ
k ( f )(x) =

∫
∞

0
e−xs dµk(s)+bk,

where µk is a non-negative Borel measure on (0,∞) and bk ≥ 0. Then, in the
distributional sense,

(−1)ksk
∂

k(s1−λ
µ0) = s1−λ

µk.

(cf. [39, Proposition 2.2]
There is a simple way to construct examples of functions in the class C λ

N .

Proposition 9. Let λ > 0 and k ≥ 0. Assume that p ∈Ck((0,∞)). Then for
the function f given by

f (x) =
1

Γ(λ )

∫
∞

0
e−xt tλ−1 p(t)dt, x > 0,

we have

[T λ
n,k( f )](x) =

1
Γ(λ )

∫
∞

0
e−xt tn+k+λ−1 (−1)k p(k)(t)dt.

We refer to [36] for the proof of the above proposition and related results.

Corollary 4. Assume that p ∈CN((0,∞)) and satisfies

(−1)k p(k)(t)≥ 0, for k = 0,1, . . .N.

Then for the function f given by

f (x) =
∫

∞

0
e−xt tλ−1 p(t)dt, x > 0,

we have that f ∈ C λ
N .

A simple example in the case where λ = 1 is the following, see [41]. Let

h(s) =

{ 1, 0 < s < 1

2− s, 1 < s < 2

0, 2 < s
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An easy computation shows that

f (x) =
∫

∞

0
e−xs h(s)ds =

1
x
+

e−2x− e−x

x2 .

Then f ∈ C 1
1 \C 1

2 .
The functions p appearing in the above Corollary have a name and they

can be characterized in terms of integral representations.

Definition 8. A function p : (0, ∞)→R is called N-monotonic if p∈CN((0, ∞))
and satisfies

(−1)k p(k)(x)≥ 0, for k = 0,1,2, . . .N .

A characterization of N-monotonic functions is the following, see [22].

Theorem 18. For a function p : (0, ∞)→ R the following statements are
equivalent
(i) p is N-monotonic.
(ii) There exist a unique constant c ≥ 0 and a unique measure ν on (0, ∞)
such that

p(t) = c+
1

(N−1)!

∫
(t,∞)

(u− t)N−1 dν(u) .

(iii) There exists a unique measure ωN on [0,∞) such that

p(t) =
∫
[0,∞)

(1− tu)N−1
+ dωN(u) .

3 Absolutely monotonic functions

Another important counterpart of completely monotonic functions are the ab-
solutely monotonic functions. Let us recall the definition.

Definition 9. A function ϕ : [0,∞)→ R is called absolutely monotonic if it is
infinitely often differentiable on [0,∞) and ϕ(k)(x) ≥ 0 for all k ≥ 0 and all
x≥ 0.
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An absolutely monotonic function ϕ on [0,∞) has an extension to an entire

function with the power series expansion ϕ(z) =
∞

∑
n=0

anzn, where an ≥ 0 for all

n≥ 0.
The Laplace transform of ϕ is defined exactly when ϕ extends to an entire

function of at most exponential type zero, meaning that ϕ has the following
property. For any given ε > 0 there exists a positive constant Cε such that
|ϕ(z)| ≤Cεeε|z| for all z ∈ C.

There are some results for the Laplace transform of absolutely monotonic
functions analogous to the ones given in the previous section. Let us begin
with the following elementary example. The function H(x) = x−1e1/x satisfies

Hk(x)≡ (−1)k(xk H(x)
)(k)

= x−(k+1) e1/x, x > 0.

Hence Hk is completely monotonic for all k≥ 0, being a product of completely
monotonic functions. We also have

H(x) =
∫

∞

0
e−xth(t)dt,

where h(t) =
∞

∑
n=0

1
(n!)2 tn is absolutely monotonic.

It turns out that a general characterization for the Laplace transforms of
absolutely monotonic functions holds true. This is obtained in [38].

Theorem 19. The following properties of a function f : (0,∞)→R are equiv-
alent.

(i) There is an absolutely monotonic function ϕ : [0,∞)→ R such that

f (x) = L (ϕ)(x) =
∫

∞

0
e−xt

ϕ(t)dt, x > 0.

(ii) There is a sequence {an}, with an ≥ 0, such that we have for all n≥ 0

f (x) =
n

∑
k=1

ak

xk +Rn(x), x > 0

where Rn is a completely monotonic function of order n.
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(iii) The function (−1)k(xk f (x))(k) is completely monotonic for all k ≥ 0.

(iv) The function (−1)k(xk f (x))(k) is non-negative for all k ≥ 0.

(v) We have f (x)≥ 0 and (xk f (x))(2k−1) ≤ 0 for all k ≥ 1.

For λ > 0 and k non-negative integer, we define

[dλ
k ( f )](x) := xλ−1(−1)k [cλ

k ( f )](x) = (−1)k(xk+λ−1 f (x))(k).

We can obtain the following generalization.

Theorem 20. Let λ > 0 be given. The following properties of a function
f : (0,∞)→ R are equivalent.

(i) There exists an absolutely monotonic function ϕ : [0,∞)→ R such that

f (x) =
∫

∞

0
e−xttλ−1

ϕ(t)dt, x > 0.

(ii) The function [dλ
k ( f )](x) is completely monotonic for all k ≥ 0.

(iii) The function [dλ
k ( f )](x) is non-negative for all k ≥ 0.

The proof of this theorem follows from Theorem 19 by noticing

f (x) =
∫

∞

0
e−xttλ−1

ϕ(t)dt

for some absolutely monotonic function ϕ of exponential type zero if and only
if

xλ−1 f (x) =
∫

∞

0
e−xt

ψ(t)dt

for some absolutely monotonic function ψ of exponential type zero. Indeed,
the relationship between the functions ϕ and ψ is:

ϕ(t) =
∞

∑
n=0

antn⇔ ψ(t) =
∞

∑
n=0

anΓ(n+λ )

n!
tn.
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There are various applications of this result in the context of special func-
tions. Consider, for instance, the generalized hypergeometric series

ϕ(t) = 1F2
(
a;b,c; t) =

∞

∑
k=0

(a)k

(b)k(c)kk!
tk, a > 0,b > 0,c > 0

defines an absolutely monotonic function on [0, ∞). Its Laplace transform
exists for all x > 0 and it is given by the formula

f (x) =
∫

∞

0
e−xt

ϕ(t)dt =
1
x 2F2

(
a,1;b,c;

1
x

)
=

∞

∑
n=0

(a)n

(b)n (c)n

1
xn+1 .

Moreover, ∫
∞

0
e−xt tλ−1

1F2
(
a;b,c; t)dt =

Γ(λ )

xλ
2F2
(
a,λ ;b,c;

1
x

)
,

for any λ > 0. Therefore the function Γ(λ )

xλ 2F2
(
a,λ ;b,c; 1

x

)
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The lonely runner conjecture
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Abstract. The statement of the renowned lonely runner conjecture is the fol-
lowing: suppose that we have n runners, starting from the same point, running
on a circular track with distinct constant speeds. Then, each runner becomes
lonely some time, that is, every other runner has distance from them ≥ 1/n.
This was initially stated by Jörg Wills in 1968 [11] in the setting of Diophan-
tine approximation; its imaginative name was given by Goddyn in 1998 [3],
and since then attracted many researchers to this problem, most notably Ter-
ence Tao [10], who proved that this problem is decidable. Until now, this
conjecture has only been solved for n ≤ 7 runners; the proof for 7 runners
was given by Barajas and Serra [1].

1 Introduction

A long standing conjecture stated by Jörg Wills in 1968 [11] is the following:

Conjecture 1 (Lonely Runner Conjecture). Let v1, . . . ,vk be distinct real num-
bers. Then, for every i with 1≤ i≤ k there is some t ∈R such that ‖vit− v jt‖≥
1
k for all j 6= i, where ‖x‖ denotes the distance from x to the nearest integer.
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One could visualize k runners running on a circular track of (arc)length
1, with common starting point and different speeds v1, . . . ,vk; the above state-
ment asserts that there is a moment for every runner when they get lonely,
that is, every other runner is at distance at least 1

k from them. A usual reduc-
tion of the problem is fixing one runner to the starting point, so all the other
have different nonzero speeds v1, . . . ,vn. Then, an equivalent condition to the
conjecture is the existence of t ∈ R such that

‖vit‖ ≥
1

n+1
, (1)

for all i, and this is the reformulation that we will use in the sequel; we note
that the lonely runner interpretation was done by Goddyn [3]. The inequalities
(1) are tight; this can be seen by considering vi = i, 1≤ i≤ n and the Dirichlet
approximation theorem.

From now on, when we refer to the n+1 runner problem, we will always
mean that the runner with the zero speed becomes lonely at some time t. Fur-
thermore, we will call the interval [ 1

n+1 ,
n

n+1 ] mod 1 the safe zone, and that
runner i is safe at time t when he is at that interval mod 1, i.e. when (1) holds.
Lastly, the fractional part of x ∈ R will be denoted by 〈x〉.

In 1973, Cusick [6] stated an equivalent conjecture in a geometric setting.
In particular, he asked what the largest possible size of a n-dimensional cube
is, such that a lattice arrangement of such cubes obstructs any nontrivial view
from the origin, i.e. any line through the origin not contained in a coordinate
hyperplane intersects one such cube centered at one point of (1

2Z)
n.

The 3-runner problem is trivial, and was already observed by Wills [11];
for this, suppose that 0 < v1 < v2 are the speeds of the runners. The stationary
runner becomes lonely some time during the first lap of the slowest runner;
indeed, at time t = 1

3v1
we have ‖v1t‖= 1

3 . If v2 ≤ 2v1, then 〈v2t〉 ∈ [1/3,2/3],
so the stationary runner becomes lonely at time t = 1

3v1
. If, on the other hand,

v2 > 2v1, we consider the next time when the second runner is safe; since
v2 > 2v1, the first runner does not exit the safe zone until this moment, so this
is the desired time when both runners are safe.

The 4-runner problem was solved by Betke and Wills in 1972 [2] and
independently by Cusick in 1974 [5]. The 5-runner problem was solved by
Cusick and Pomerance in 1984, and then in 1998 a simpler proof was given
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which was then applied to a graph theoretic problem. Bohman, Holzman, and
Kleitman solved the 6-runner problem in 2001 [4]; Renault provided a shorter
solution afterwards in 2004 [8]. Finally, the 7-runner problem was solved by
Barajas and Serra in 2008 [1].

In this note, we will present the latest research relevant to this conjecture,
mostly the contribution of the author with his collaborator [7]. Along the
way, we will mention some equivalent formulations, weaker versions of the
conjecture and Tao’s contributions, as well as presenting a new proof on the
4-runner problem depending on the equivalent geometric formulation in [7].

2 Reduction to integer speeds

In the entire bibliography pertaining to this problem, it is always mentioned
that it suffices to solve the problem for integer speeds. Until 2001, this re-
duction was attributed to the original paper of Wills [11], however, this was
refuted by Bohman, Holzman, and Kleitman [4], and then the three authors
provided their own proof for the reduction of this problem to integer speeds:

Lemma 1 (Lemma 8 [4]). Let 0 < δ < 1/2. Suppose that for every collection
v1, . . . ,vn−2 ∈Q+ there exists t ∈ R+ satisfying

〈vit〉 ∈ (δ ,1−δ ) for i = 1, . . . ,n−2.

Then for any collection u1, . . . ,un−1 ∈ R+ for which there is a pair ui,u j such
that ui/u j /∈Q there exists t ∈ R+ satisfying

〈uit〉 ∈ (δ ,1−δ ) for i = 1, . . . ,n−1.

Since then, every publication on the lonely runner conjecture cites this Lemma
as the justification for reducing the problem to integer speeds. However, upon
a closer inspection we can see that this reduction is conditional on the veracity
of the lonely runner conjecture on lower dimensions.

To be more precise, the authors in [4] applied this Lemma for n = 6 (i.e.
the six runner problem) and δ = 1/5. Since the lonely runner problem was
already solved for n ≤ 5, the hypothesis is true for these values of n and δ .
The conclusion of the Lemma then basically states that the lonely runner con-
jecture for n = 6 is true when there is a pair of speeds ui and u j, whose ratio
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ui/u j is not rational. This reduces the six runner problem to speeds whose
pairwise ratios are all rational; since this problem is scale-invariant, we may
multiply all speeds by some integer number and eventually obtain all integer
speeds.

It is evident, that one can use this Lemma if they wish to tackle the smallest
unknown case (currently, n = 8), or if they have a uniform approach for all
n ∈ N. The latter is completely out of reach with the current state of art. To
give another candid example, it would be inaccurate for someone to claim a
solution for, say, the 10-runner problem, by reducing to integer speeds and
applying the above Lemma; this proof would clearly be incomplete, as the
case where some ratio ui/u j is not rational would follow from the 9-runner
problem for integer speeds, which wouldn’t be solved yet.

Eventually, this was fixed in 2017 by the author and his collaborator (Lem-
ma 5.3 [7]), where they provided an unconditional proof of the reduction to
integer speeds. At first sight, it might not be understood that this is indeed the
proof due to its cryptic notation. We will attempt to describe the proof in the
rest of this section.

From a probabilistic viewpoint, the position of the runner with speed vi

could be considered as a random variable, say Xi. The probability distribution
is uniform due to the constant speed. How do the Xi relate with each other?
Are they independent?

It turns out that independence of the variables Xi is intimately connected
with the linear dependency relations among the speeds vi with rational coeffi-
cients. When the vi are linearly independent over Q, then the Xi are mutually
independent random variables, so for every ε > 0 there is some t ∈ R+ such
that

‖vit‖ ≥
1
2
− ε, for i = 1, . . . ,n. (2)

The other extreme case is when every pair of speeds is dependent over Q,
which is precisely the case where all speeds are integers (possibly after rescal-
ing). This alone, does not constitute a proof, of course, but is the basis of the
main argument. The set

{(〈v1t〉, . . . ,〈vnt〉) : t ∈ R} (3)
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is a line in the n-dimensional torus Tn = Rn/Zn. By Kronecker’s Theorem3,
the closure of this line is a subtorus of dimension m, where m is the dimension
of the Q-vector space spanned by the real numbers v1, . . . ,vn. When m = n,
this means that the line above is dense in Tn, whence (3) holds. In order to
find the optimal bound δ > 0, for which ‖vit‖ ≥ δ holds at some time t and all
i, we pose an equivalent question: what is the `∞ distance from the line (2) to
the “center” of the torus, (1

2 ,
1
2 , . . . ,

1
2)? The maximal possible distance from

such a line to the center would then be 1/2−δ , where δ is the optimal bound
mentioned above.

It is expected that the maximal distance is attained when the closure of
this line has as small dimension as possible, i.e. when the speeds are integer
numbers; this is precisely the argument that helps us reduce the loenly runner
problem to integer speeds. And indeed, this is true. It was proven in [7] that
if the dimension of the Q-vector space spanned by v1, . . . ,vn in (2) is greater
than 1, then there is a set of distinct positive integer speeds, say u1, . . . ,un,
such that the line

{(〈u1t〉, . . . ,〈unt〉) : t ∈ R}

is contained in the closure of (2), therefore its distance from the center of the
torus cannot be smaller than that of (2). This completes the reduction of the
problem to integer speeds, without depending on smaller dimensions.

3 Equivalent and weaker formulations

It is already mentioned that the lonely runner conjecture, initially a problem
originated from Diophantine approximation [11], has a geometric formulation
as well [6]. We will present some equivalent reformulations of the lonely
runner conjecture, along with a certain weakened version, which deals with
runners with different starting points, inspired by the work of Schoenberg [9]
and tackled in [7].

First, consider a point u0 in Rm and a lattice configuration of cubes of
the same size and alignment; for example, consider all translates of the cube
[ε,1−ε]m by integer lattice points. We say that the view with direction α ∈Rm

is obstructed, if the line parallel to α through u0 intersects the aforementioned

3We could also apply Weyl’s criterion.
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lattice configuration of cubes. So, given u0 and α with certain properties, what
is the optimal ε , such that every such view is obstructed? Some restrictions on
the direction α are in order: if, for example u0 = 0 and one of the coordinates
of α is zero, then the optimal ε is zero. In general, if one of the coordinates
of α is zero, then finding the optimal ε reduces to a triviality; it is simply the
smallest distance between the set of coordinates of u0 and Z. We therefore
restrict from now on to α whose coordinates are all nonzero.

When u0 = 0 we get the lonely runner problem. For the time being we
consider a weaker version by letting u0 vary as well. A first step towards a
reformulation in a different setting is to work on the quotient space Rm/Zm =
Tm = [0,1)m by taking coordinates mod 1. Then, the closure of the image of
the line u0 + tα , t ∈ R, intersects the “inner” torus [ε,1− ε]m, if and only if
this line intersects the lattice arrangement of cubes [ε,1− ε]m +Zm.

Next, one could further relate to billiard ball motions inside a unit cube.
For example, break the line into pieces, every time one coordinate becomes
zero, so that the points in the relative interior of every piece have strictly
nonzero coordinates. We can rearrange those pieces by taking appropriate
reflections with respect to the coordinate hyperplanes, so that the resulting set
is a billiard ball motion. We denote by bbm(u0,α) the billiard ball motion
starting from u0 ∈ [0,1)m and initial direction α ∈ Rm. The image of the line
u0+tα , t ∈R, intersects the “inner” torus [ε,1−ε]m, if and only if bbm(u0,α)
intersects [ε,1− ε]m. This appeared first in [9], when a similar problem was
tackled.

Returning to the case where we have the closure of a line in a torus inter-
secting an inner torus, we may apply periodization in a different way, so that
the cube [ε,1− ε]m intersects a lattice arrangement of lines. The closure of
said arrangement is then u0 +Eα [7, Lemma 2.3] where

Eα = {ξ ∈ Rm|〈`,ξ 〉 ∈ Z,∀` ∈ Λα} (4)

and the lattice Λα is the lattice of the integer linear dependencies among co-
ordinates of α , that is

Λα = {` ∈ Zm|〈`,α〉= 0}= Zm∩α
⊥. (5)

It is evident that this closure is a lattice arrangement of parallel affine sub-
spaces. Applying the orthogonal projection which maps each such subspace
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to a point, this lattice arrangement becomes simply a lattice and the cube be-
comes a zonotope. Of course, everything can be rephrased so that, initially, the
line avoids the lattice configuration of cubes (thus seeking the supremum over
all ε with this property; either way, the optimal ε is the same). In particular,
setting

Vα = Λα ⊗ZR,

the orthogonal projection of the unit cube Cm = [0,1]m on Vα is a zonotope,
with vertices in Zm|Vα . Next, take an invertible linear map T : Vα → Rn, for
which T (Zm|Vα) = Zn. We denote the zonotope T (Cm|Vα) by Zα , and we
further let 1m = (1, . . . ,1)ᵀ be the all-one-vector in Rm.

We summarize the above into the following theorem:

Theorem 1. [7, Theorem 1.1] Let u0 ∈ Rm, α ∈ Rm, 0 ≤ ε ≤ 1/2, and n =
dim(Vα). The following statements are equivalent.

1o The bbm(u0,α) in [0,1]m intersects [ε,1− ε]m.

2o The line {u0 + tα | t ∈ R} Zm in Tm intersects [ε,1− ε]m.

3o The view from u0 with direction α is obstructed by [ε,1− ε]m +Zm.

4o ((1−2ε)Zα − ū0)∩Zn 6=∅, where ū0 = T (u0− ε1m|Vα).

The main problem posed in [7], is to find the optimal (maximal) ε such
that all of the above conditions hold for all pairs (u0,α) under some natural
constraints [7, Problem 1.2]. One such constraint is to allow only vectors α

with nonzero coordinates, otherwise we can pick u0 such that the line u0 + tα
is contained in a coordinate hyperplane; this way, the optimal ε must be zero.

Such lines, views, or billiard ball motions, will be called trivial, in contrast
to the nontrivial ones with α ∈ (R \ {0})m. Next, if we restrict u0 = 0, then
the optimal ε is the constant obtained from the lonely runner problem, which
is conjectured to be equal to 1

m+1 . Moreover, the reduction to integer speeds
basically states that the optimal ε when u0 = 0 is obtained for α ∈ (Z\{0})m.

In the most general case, when u0 is allowed to take any value in Rm and
α ∈ (R?)m, we get the following weaker form of the lonely runner problem:
suppose that there are n runners with distinct constant speeds on a circular
track of length 1, not necessarily starting from the same point. Determine the
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maximal ε > 0, such that every runner at some time becomes lonely, i.e. it has
distance at least ε from every other runner.

Following the argument of the next section (the trivial bound) gives ε ≥
1

2m . What is surprising though, is that we actually have ε = 1
2m . This follows

from the (V1) version of this problem, solved by Schoenberg in 1976:

Theorem 2 (Schoenberg [9]). Every nontrivial billiard ball motion inside the
unit cube [0,1]m intersects the cube [ε,1− ε]m if and only if ε ≤ 1/(2m).

As expected, equality is attained when α is parallel to an integer vector,
or equivalently, when the dimension of the Q-vector space generated by the
coordinates of α is 1. What happens when the dimension is higher? The
goal of [7] was to provide effective inequalities for the optimal ε under such
restrictions. We define first

ε(n,m) = sup
{

ε ≥ 0 |(V1)− (V4) holds for any u0 ∈ Rm and α ∈ (R\{0})m

such that dimQ(α)≥ m−n
}
.

The bound proven in [7] is

ε(n,m)≤ 1
2(n+1)

which does not involve the dimension of the ambient space Rm. This comes
into play when we impose a further restriction on the coordinates of α , defin-
ing:

ε(n,m) = sup
{

ε ≥ 0 |(V1)− (V4) hold for any u0 ∈ Rm and any rationally

uniform α ∈ (R\{0})m with dimQ(α)≥ m−n
}
.

Under this restriction, the zonotope Zα is generated by vectors in linear gen-
eral position4, that is, every subset of n vectors forms a basis, where Zα ⊆Rn.
This was shown in [7, Corollary 3.5(i)]. Due to (V4) of Theorem 1 we get an
equivalent characterization of ε(n,m):

ε(n,m) = sup
{

ε ≥ 0 | µ(Z,Zk)≤ 1−2ε for all lattice zonotopes Z ⊆ Rk

generated by m vectors in linear general position and where k ≤ n
}
,

4This is also called the Haar property. Also, a set of such vectors is said to be full spark,
and the zonotope is sometimes called cubical.
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where µ(K,Λ) denotes the covering radius of the convex body K with respect
to the lattice Λ, defined as

µ(K,Λ) = min{µ > 0 : µK +Λ = Rn}.

The bounds proven for ε(n,m) in [7] were

m−O(n logn)
2(m−n+1)

≤ ε(n,m)≤ m−n
2(m−n+1)

.

The upper bound was proven by using some monotonicity properties of ε(n,m)
and Theorem 2. For the lower bound, the problem was recast in the setting
of Convex Geometry; the main tool was Khinchin’s Flatness Theorem and
Banaszczyk’s estimate, which gives (in the zonotopal setting):

Theorem 3. [7, Theorem 1.7] Let z1, . . . ,zm ∈ Zn be vectors in linear general
position, and Z = ∑

m
i=1[0,zi] the lattice zonotope generated by these vectors.

Then, there is an absolute constant c > 0, such that

µ(z,Zn)≤ cn logn
m−n+1

.

4 Weaker bounds and Tao’s contributions

We return to the probabilistic viewpoint: let Ai(δ ) denote the event that the
ith runner is in the forbidden zone, namely

‖vit‖< δ , (6)

or equivalently,
〈vit〉 ∈ [0,δ )∪ (1−δ ,1).

Since all speeds are constant, we must have

Prob[Ai(δ )] = 2δ .

We want to estimate the probability of the following event: at least one runner
satisfies (6). Clearly, this event is just the union of the Ai(δ ), hence

Prob[A1(δ )∪·· ·∪An(δ )]≤
n

∑
i=1

Prob[Ai(δ )] = 2nδ .
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Therefore, if δ = 1
2n −ε for any value of ε > 0, the probability of the comple-

mentary event, i.e.

‖vit‖ ≥ δ , for all i = 1, . . . ,n

is positive, therefore, there is some t ∈R such that the above inequalities hold
for all i. In other words, the conclusion of the lonely runner conjecture holds
with the weaker bound 1

2n instead of 1
n+1 .

A natural approach is to try and improve this lower bound; we fix some
notation first, borrowed from [10]. Let

δ (v1, . . . ,vn) = max
t∈R

min{‖v1t‖, . . . ,‖vnt‖}

and denote
δn = min

vi∈R,1≤i≤n
δ (v1, . . . ,vn). (7)

Dirichlet’s approximation theorem can be rephrased as δn ≤ 1
n+1 , while the

lonely runner conjecture is equivalent to

δn =
1

n+1
. (8)

The trivial bound, shown above, is δn ≥ 1
2n . There were numerous attempts to

improve the trivial bound (for a full account see [10]), however the improve-
ments were of the order of O( 1

n2 ), until Tao’s contribution, using tools from
harmonic analysis:

Theorem 4. [10, Theorem 1.3] There is an absolute constant c > 0 such that

δn ≥
1
2n

+
c logn

n2(log logn)2 ,

for all sufficiently large n.

However, the second main theorem in [10] is actually more important, as it
shows that the lonely runner conjecture is a decidable problem, for each n;
it suffices to check finitely many cases in order to show whether the lonely
runner conjecture holds or not, for a fixed number of runners5:

5The theorem is slightly rephrased.
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Theorem 5. [10, Theorem 1.4] There is an explicitly computable constant
C0 > 0, such that for every n ∈ N we have

δ (v1, . . . ,vn)≥
1

n+1

if one of the speeds is ≥ nC0n2
.

Unfortunately, even for n = 7 nonzero runners, the number of cases one needs
to consider is enormous with respect to the current computational abilities. In
a work that is in progress, the author managed to decrease the bound in The-
orem 5 significantly, down to O(n2n), under the condition that the conjecture
is true up to n− 1 (it seems that this condition can be removed). However,
this still gives us an enormous amount of cases even for n = 7, albeit less than
before. In the next section we will present this approach.

5 A volume argument for four runners

Although the four runner problem was already solved by Betke and Wills
[2], we will present here a geometric proof, using the interpretation of the
lonely runner conjecture in [7, Section 5]. With every set of integer speeds
0 < v1 < · · ·< vn with gcd(v1, . . . ,vn) = 1 we associate a lattice zonotope Z in
Zn−1 generated by n lattice vectors in general linear position. In particular,

Z =
n

∑
j=1

[0,u j],

and we denote the center of this zonotope by x. One important connection
between the speeds and the zonotope Z is the following: the volumes of the
parallelepipeds spanned by n− 1 of the n vectors u j are precisely the speeds
v1, . . . ,vn. In particular,

vol(Z) = v1 + v2 + · · ·+ vn. (9)

The runners 1,2, . . . ,n satisfy the lonely runner conjecture, if and only if [7,
Conjecture 5.4]

x+
n−1
n+1

(Z−x)∩Zn−1 6=∅.



170 R.D. Malikiosis, The lonely runner conjecture

If x ∈ Zn−1, there is nothing to prove, so we may assume that x = 1
2(u1 +

· · ·+un) ∈ (1
2Z)

n−1 \Zn−1. Denote by Λ the lattice generated by x and Zn−1;
obviously, [Λ : Zn−1] = 2, and translating by −x we obtain

n−1
n+1

Z∩ (x+Zn−1) 6=∅.

We denote the zonotope n−1
n+1 Z by K; what we want to show is that K contains a

point in the shifted lattice x+Zn−1. Minkowski’s first theorem on successive
minima does not apply in this case, as the body K could be flat and lying
between two lattice layers and having arbitrarily large volume. However, we
remind that K has a special form, it is a contraction of a lattice zonotope
generated by n vectors in linear general position.

Our hope, therefore is to show that if K has large enough volume, then it
intersects x+Zn−1. We will succeed in doing so when K is planar, i.e. for
n = 3 runners.

Theorem 6. Let n = 3 and K be the 2-dimensional body defined as above,
such that the three integral determinants |det(u j,uk)| are distinct (equal to
the speeds of the runners). If vol(K)≥ 6, then K∩ (x+Z2) 6=∅.

Proof. We have

K =
3

∑
j=1

[−1
4 u j,

1
4 u j]

for some vectors u1,u2,u3 ∈ Z2 in general linear position. Moreover, we may
assume that

|det(uσ(1),uσ(2))|= vσ(3)

for any permutation σ ∈ S3, where vi are the speeds of the runners. Therefore,

4vol(K) = v1 + v2 + v3.

Let λ1, λ2 be the successive minima of K with respect to Z2; in particular, let

‖w1‖K = min
w∈Z2\{0}

‖w‖K =: λ1
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and
‖w2‖K = min

w∦w1
‖w‖K =: λ2,

where ‖·‖K the gauge norm associated with K, defined by

‖u‖K = min{λ > 0 : u ∈ λK}.

The vectors w1 and w2 are not necessarily unique with these properties, but
can be chosen in such a way that they constitute a basis of Z2 (this is a 2-
dimensional fact only; it does not always hold in 3 dimensions and above).
The vectors

1
2

w1,
1
2

w2,
1
2
(w1 +w2)

are representatives from the nonzero classes of 1
2Z

2/Z2, and exactly one is
x+Z2. We will show something stronger than the assertion, namely that K
contains a representative from each class when vol(K) ≥ 6, or equivalently
that one element in each class has norm ≤ 1, establishing that K∩ (x+Z2) 6=
∅. We distinguish two cases:
λ2 ≤ 1 By definition, ‖w1‖K ,‖w2‖K ≤ 1, so applying the triangle inequality

for ‖·‖K we obtain ‖1
2 w j‖K ≤ 1

2 for j = 1,2, and

‖1
2(w1 +w2)‖K ≤

1
2
‖w1‖K +

1
2
‖w2‖K ≤ 1,

as desired.
λ2 > 1 By definition, the lattice length6 of K∩Rw1 is 2

λ1
. Applying Minkow-

ski’s second Theorem we obtain

vol(K)≤ 4
λ1λ2

<
4
λ1

, (10)

so

‖1
2 w1‖K =

λ1

2
<

2
vol(K)

,

therefore 1
2 w1 ∈ K as long as vol(K) ≥ 2. Next, we will show that if the

volume of K is sufficiently large, then it contains a representative from each

6It is meant that [0,w1] has length one.
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of the shifted lattices 1
2 w2+Z2 and 1

2(w1+w2)+Z2. We will accomplish this
by showing that

`(K∩ (1
2 w2 +Rw1))≥ 1,

where ` is the lattice length; as before, it is understood that a parallel trans-
lation of [0,w1] has length one. Assuming that the coordinate system of Z2

is with respect to w1 and w2, we seek points of K with maximal height, i.e.
maximal w2-coordinate. If none of the u j is parallel to w1, then the height of
±u j is at least one, with an appropriate choice of sign. Therefore, there is a
suitable choice of signs such that

1
4
(±u1±u2±u3) ∈ K

has height at least 3
4 . On the other hand, if say w1 is parallel to u1, then the

height of
1
4
(±u2±u3) ∈ K

is at least 3
4 , with an appropriate choice of sign. This follows from the fact

that
|det(u1,u2)| 6= |det(u1,u3)|,

and they are both integral, so the smallest possible heights that could be ob-
tained from ±u2 and ±u3 are 1 and 2, so their sum gives a total of at least
3.

So, let y ∈ K∩ (3
4 w2+Rw1). By convexity, the triangle T with vertices y,

1
λ1

w1, − 1
λ1

w1 is a subset of K, hence

`(K∩ (1
2 w2 +Rw1))≥ `(T ∩ (1

2 w2 +Rw1)) =
1
3 l([− 1

λ1
w1,

1
λ1

w1]) =
2

3λ1
> vol(K)

6 ,

by (10). Thus, if vol(K)≥ 6, then K always has a representative from 1
2 w2 +

Z2 and 1
2(w1 +w2)+Z2 respectively, completing the proof.

Since 4vol(K) = v1+v2+v3, the above Theorem can be used to tackle the
four runner problem with

v1 + v2 + v3 ≥ 24.
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The rest could easily be checked computationally.
In a work that is in progress, the author managed to extend the above

argument as follows:

Theorem 7. Let v1 > v2 < · · · > vn > 0 be the integer speeds of the runners,
such that

n

∑
i=1

vi ≥
(

n(n+1)
2

)n−1

.

If δn−1 =
1
n (i.e. the lonely runner conjecture holds for n−1 nonzero runners),

then
δ (v1, . . . ,vn)≥

1
n+1

.

Since the lonely runner conjecture holds for≤ 6 nonzero runners, then for
n = 7 the above Theorem reduces the proof (or the search for counterexam-
ples) to speeds satisfying

v1 + · · ·+ v7 < 286 = 481890304.

Even though this beats the bound given by Tao, as it is of the magnitude
of O(n2n) compared to O(nCn2

), it is still large enough to render this search
computationally infeasible with the current technology. We should also note,
that removing the dependence to lower dimensions seems feasible, perhaps
by weakening the bound. This is currently in progress; a proof of the above
Theorem will be presented shortly in a subsequent paper.
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1 Introduction

In this lecture I shall present some results of Harmonic Analysis on symmetric
and locally symmetric spaces, as

• Kunze and Stein phenomenon,

• Lp-continuity of convolution operators (multipliers) and

• Schrödinger equations

obtained by N. Lohoué, N. Mandouvalos, A. Fotiadis, E. Papageorgiou and
me.

To present the above mentioned results we need to introduce some no-
tation. Let G be a real semisimple Lie group, connected, noncompact, with
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finite center and K be a maximal compact subgroup of G. We denote by X
the Riemannian symmetric space G/K. Note that the real hyperbolic space
Hn+1 = SO(n+1,1)/SO(n+1) is a symmetric space.

Note also that we choose this class of Lie groups in order to have available
the spherical Fourier transform which is necessary for the proof of our results.

Denote by g (resp. by k) the Lie algebra of G (resp. K). Let p be the
subspace of g which is orthogonal to k with respect to the Killing form (this
an bilinear form on T0 (X), the tangent space of X at the origin, which defines
the metric of X). Note that p is isomorphic to T0 (X).

For example, in the upper-half space model of Hn+1 = {x ∈ Rn,y > 0},
the hyperbolic metric is given by

ds2 = y−2 (dx2 +dy2) .
We have the Cartan decomposition

g= k⊕p.

Let a be an abelian maximal subspace of p. If dima= d, we say that X has
rank d. For example Hn+1, as well as the other three hyperbolic spaces, i.e. the
complex, the quaternionic and the octonionic plane, are the only symmetric
spaces with rank 1.

Let Σ ⊂ a∗, the root system of (g,a). Recall that α ∈ a∗, is a root if the
root space

gα = {X ∈ g : [H,X ] = α (H)X for all H ∈ a} ,

is non trivial.
We denote by W the Weyl group associated to Σ. This is a finite group

of reflections through the hyperplanes orthogonal to the roots. Choose a set
Σ+ of positives roots and denote by ρ the half-sum of positive roots. This
is a important geometric invariant of X . For example the bottom of the L2

spectrum of the Laplacian−∆X is equal to ‖ρ‖2. Finally, we denote by Cρ the
convex hull in a∗ generated by w.ρ , w ∈W .

We have the Cartan decomposition

G = K(expa+)K. (1)
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Normalize the Haar measure dk of K such that
∫

K dk = 1. Then, from the
Cartan decomposition, it follows that∫

G
f (g)dg =

∫
K

dk1

∫
a+

δ (H)dH
∫

K
f (k1 exp(H)k2)dk2,

where the modular function δ (H) satisfies the estimate

δ (H)≤ ce2ρ(H).

Bear in mind that X has exponential volume growth:

|B(x,r)| ≤ cec′(n−1)r, n = dimX .

This a sacrée difference with the case of Rn. For example, Vitali type
covering lemmata are no more available, and consequently, the Calderón-
Zygmund theory, which gives the L1−L1

w continuity of singular integrals in
the case of positive curvature, is no more valid.

Let Γ be a discrete and torsion free subgroup of G, and let us consider
the locally symmetric space M = Γ\X = Γ\G/K. Then M, equipped with the
projection of the canonical Riemannian structure of X , becomes a Riemannian
manifold.

1.1 Kunze and Stein phenomenon

For the proof of the results, we shall make use of a strange phenomenon, the
Kunze and Stein phenomenon. Let us recall that a central result in the theory
of convolution operators on semisimple Lie groups is the Kunze and Stein (K
and S) phenomenon. It states that if p∈ [1,2), f ∈ L2(G) and κ ∈ Lp(G), then

|| f ∗κ||L2(G) ≤C (p) || f ||L2(G)||κ||Lp(G), (2)

(see Ionescu, [21, p. 3361]).
This inequality was proved first by Kunze and Stein [25] in the case when

G = SL(2,R) and by Cowling [8] in the general case. In [18], Herz noticed
that the inequality (2), can be sharpened if the kernel κ is K-bi-invariant. De-
note by ∗|κ| the convolution operator f → f ∗ |κ|. Then, Herz’s criterion
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asserts that if p≥ 1 and κ is a K-bi-invariant kernel, then

|| ∗ |κ| ||Lp(G)→Lp(G) = C
∫

G
|κ(g)|ϕ−iρp(g)dg

= C
∫
a+
|κ(expH)|ϕ−iρp(expH)δ (H)dH,

where ϕλ is the elementary spherical function of index λ (the generalization
in the present setting, of the pure imaginary exponentials ei(x,y), x,y∈Rn), and

ρp = |2/p−1|ρ, p≥ 1.

Note that for p = 2, the best we can obtain in the Euclidean setting is the
inequality

|| ∗ |κ| ||L2(Rn)→L2(Rn) ≤ ||κ||L1(Rn),

while in the semisimple case we have that

|| ∗ |κ| ||L2(G)→L2(G) =C
∫
a+
|κ(expH)|ϕ0(expH)δ (H)dH.

Bearing in mind that

||κ||L1(G) =
∫
a+
|κ(expH)|δ (H)dH,

we deduce from the above norm estimates that for p = 2, the non-trivial gain
over the Euclidean case is the factor ϕ0(expH).

1.2 Kunze and Stein phenomenon on locally symmetric spaces
and the class (KS)

In [28] Lohoué and M. proved an analogue of this phenomenon for a class of
locally symmetric spaces M = Γ\G/K. More precisely, let λ0 be the bottom
of the L2-spectrum of −∆ on M. We say that M possesses property (KS) if
there exists a vector ηΓ ∈Cρ ∩S

(
0,
(
ρ2−λ0

)1/2
)

, with S (0,r) the sphere in
a∗, such that for all p ∈ (1,∞),

‖ f ∗ |κ|‖Lp(M)→Lp(M) ≤ ‖ f‖p

∫
G
|κ (g)|ϕ−iηΓ

(g)s(p) dg, (3)
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where
s(p) = 2min

(
(1/p) ,

(
1/p′

))
. (4)

One of the main problems we faced in doing analysis on locally symmetric
space is the precise description of the class on which our results are valid. This
is due to the fact that the geometry of the discrete group Γ plays an important
role on the proofs and the validity of the results.

In [28] it is shown that M possesses property (KS) if it is contained in the
following three classes:

1o Γ is a lattice i.e. vol(Γ\G)< ∞,

2o G possesses Kazhdan’s property (T).

3o Γ\G is non-amenable.

Let us make some comments on the above classes in the case when rankX = 1.
Recall that G has property (T) iff G has no simple factors locally isomor-

phic to SO(n,1) or SU(n,1), (cf. de la Harpe and Valette, [16]). In this case
Γ\G/K possesses property (KS) for all discrete subgroups Γ of G.

Next, recall that quaternionic hyperbolic space Hn (H), is written as

Hn (H) = Sp(n,1)/Sp(n)

and the octonionic plane by

H2 (O) = F−20
4 /Spin(9) .

So, Γ\Hn (H) and Γ\H2 (O) have property (KS) for all discrete subgroups
Γ of Sp(n,1) and F−20

4 respectively. Thus, from cases (1) and (2) we deduce
that all locally symmetric spaces Γ\Hn (H) and Γ\H2 (O) have property (KS).

On the contrary, the isometry groups SO(n,1) and SU(n,1) of real and
complex hyperbolic spaces do not have property (T). Consequently the quo-
tients Γ\Hn (R) and Γ\Hn (C), with infinite volume do not in general belong
in the class (2).

For the class (3) note that since G is non-amenable, then Γ\G is non-
amenable if Γ is amenable. So, if Γ is amenable, then the quotients Γ\Hn (R)
and Γ\Hn (C) possesses property (KS) even if they have infinite volume.
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Note that if Γ is finitely generated and has subexponential growth, then Γ

is amenable, (cf. Grigorchuk [14]).
We shall apply the K and S phenomenon to solve some classical problems

of Harmonic Analysis on locally symmetric spaces.

2 Convolution operators (multipliers)

2.1 Multipliers on Rn

Let us recall that multipliers on Rn are defined by the integral:

Tm( f )(x) =
∫
Rn

κ (x− y) f (y)dy = (κ ∗ f )(x) , (5)

where κ = F−1m of the bounded function m.
Note that in the Fourier transform variables 5 is written as

F (Tm( f ))(ξ ) = m(ξ )(F f )(ξ ). (6)

The Mikhlin-Hörmander theorem [33, 20] gives the best known sufficient
conditions on the multiplier m in order to have that the operator Tm is bounded
on Lp for all p ∈ (1,∞).

Denote by [t] is the integer part of t ∈ R.

Theorem 1 (MIKHLIN-HORMANDER). If

(1+ |ξ |)α |∂ αm(ξ )| ≤C, (7)

for all multi-indices α with |α| ≤ [n/2]+1, then Tm is bounded on Lp for all
p ∈ (1,∞).

Denote by S(K\G/K) the Schwartz space of K-bi-invariant functions on
G.

The spherical Fourier transform H is defined by

H f (λ ) =
∫

G
f (x)ϕλ (x) dx, λ ∈ a∗, f ∈ S(K\G/K),
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where ϕλ are the elementary spherical functions on G:

ϕλ (x) =
∫

K
ei(ρ−H(kx))dk

By a celebrated theorem of Harish-Chandra, H is an isomorphism be-
tween S(K\G/K) and S(a∗) and its inverse is given by

(H −1 f )(x) = c
∫
a∗

f (λ )ϕ−λ (x)
dλ

|c(λ )|2
, x ∈ G, f ∈ S(a∗)W ,

where c(λ ) is the notorious Harish-Chandra function.

2.2 Multipliers on symmetric spaces

In the present case the operator Tm is also defined as a convolution

Tm( f )(x) =
∫

G
κ(xy−1) f (y)dy = (κ ∗ f )(x) , (8)

where κ = H −1m of the bounded and W -invariant function m (m is just even
in the rank one case).

In their seminal paper Clerc and Stein [7], prove the following necessary
result:

Theorem 2 (CLERC-STEIN). If Tm is bounded on Lp, p ∈ (1,2), then m
extends to a W-invariant bounded holomorphic function inside the tube Tv =
a∗+ ivCρ , where v = |(2/p)−1|.

Such a function m : a∗ −→C, is called Fourier multiplier of Lp (X). Their
class is denoted by Mp.

It is important to note that if m is bounded and holomorphic function inside
the tube Tv = a∗+ ivCρ , then its inverse spherical Fourier transform decays
exponentially and this kills the exponential volume growth.

2.3 Multiplier Problem

Find the optimal assumptions on a bounded and W-invariant function m :
a∗ −→ C that insure that m is an Mp multiplier for some p≥ 1.
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We say that
m ∈M (v,N) , v ∈ R+, N ∈ N,

if

1o m is analytic inside the tube T v and

2o for all multi-indices α , with |α| ≤ N, ∂ αm(λ ) extends continuously to
the whole of T v

with (
1+ |λ |2

)|α|/2
|∂ αm(λ )|< ∞, λ ∈T v. (9)

In [2], Anker proved the following

Theorem 3 (ANKER). If m ∈M (v,N) with v = |(2/p)−1|, p ∈ (1,∞) and
N = [vdimX ]+1, then Tm is bounded on Lp (X).

Note that if m ∈Mp, then as it is mentioned above, by Clerc and Stein
[7], m is holomorphic function inside the tube T v. Thus, Anker obtained the
optimal width of the tube T v of analyticity.

2.4 Multipliers on locally symmetric spaces

Consider the convolution operator

Sκu(x) =
∫

G
u(g)κ

(
g−1x

)
dg, x ∈ G, u ∈C∞

0 (M) ,

where g = {γgk : γ ∈ Γ,k ∈ K} is the class of g ∈ G in M. Note that Sκ is a
well defined operator on C∞

0 (M), if u ∈C∞
0 (M).

For p ∈ (1,∞) we set

vΓ (p) = 2min
(
(1/p) ,

(
1/p′

)) |ηΓ|
|ρ|

+ |(2/p)−1| , (10)

where p′ is the conjugate of p.
If n = dimX and a = dima is the rank of X , set b = n−a.
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Let b′ be the smallest integer ≥ b/2, and set

N = [a/2]+b′+1.

In [28] Lohoué and M. we prove the Lp-boundedness of multipliers on a
class of locally symmetric spaces. (See also [29]).

Theorem 4 (LOHOUE, M.). Assume that G satisfies the property (KS). Let
vΓ (p), p ∈ (1,∞) and N be as above. If m ∈M (v,N), with v > vΓ (p), then
the operator Sκ is bounded on Lp (M).

The crucial step for the proof of the boundedness of S∞
κ , the part at infinity

of the operator, is to obtain the estimate of the norm ‖S∞
κ ‖p→p.

In the case of locally symmetric spaces, as in the case of symmetric spaces,
to prove the finiteness of ‖S∞

κ ‖p→p, we make use of K and S phenomenon.
Note that N = [n/2]+2, if a is even and b odd and N = [n/2]+1, otherwise.
So, in the case when N = [n/2]+1, the number of derivatives of the multiplier
m(λ ) we need to control in Theorem 4, is the same as in the version of the
Hörmander-Mikhlin theorem.

It is important to note that if λ0 = |ρ|2, then the width v of the tube T v of
analyticity satisfies v > |(1/p)− (1/2)|.

Note that in the case of symmetric spaces, by Clerc and Stein and Anker
[7, 2], the optimal width is |(1/p)− (1/2)|.

2.5 Oscillating multipliers on rank one symmetric and locally sym-
metric spaces

In [15] Giulini and Meda deal with the Lp-boundedness, in the context of rank
one symmetric spaces, of the oscillating multiplier

Tα,β ( f )(x) =
∫

G
κα,β (xy−1) f (y) dy, f ∈C∞

0 (X). (11)

where κα,β = H −1mα,β , and

mα,β (λ ) = (λ 2 +ρ
2)−β/2ei(λ 2+ρ2)α/2

, α > 0, Re β ≥ 0, λ > 0,

and prove the following
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Theorem 5 (GIULINI, MEDA). Assume that X is an n-dimensional rank one
symmetric space.

(i) If α < 1, then Tα,β is bounded on Lp(X), p ∈ (1,∞), provided that
|1/p−1/2|< Reβ/αn.

(ii) If α = 1, then Tα,β is bounded on Lp(X), p ∈ (1,∞), provided that
|1/p−1/2|< Reβ/(n−1).

(iii) If α > 1, then Tα,β is bounded only on L2(X).

In [35], E. Parageorgiou, proves the analogue of Theorem 5 on a class of
locally symmetric spaces. Denote by δ (Γ) the critical exponent of the group
Γ:

δ (Γ) = inf{s > 0 : Ps (x,y)<+∞} ,

where
Ps (x,y) = ∑

γ∈Γ

e−sd(x,γy),

are the Poincaré series.
Note that δ (Γ) ∈ [0,2ρ], and that Ps (x,y) converges for s < δ (Γ) and

diverges for s > δ (Γ).
We say that Γ belongs to the class (CT ) if δ (Γ) = 2ρ and Γ is of conver-

gence type.
For example, if Γ⊂ SO(n,1), then Γ∈ (CT ) if it is of the second kind, i.e.

the limit set Λ(Γ) is not equal to the whole of ∂Hn(R), cf. Nicholls [34]. For
a criterion of convergence for the case of rank one locally symmetric spaces,
see Roblin [37].

The criterion is given in terms of Γ-invariant Patterson-Sullivan densities,
which are known only in the rank one case.

Theorem 6 (PAPAGEORGIOU). (i). If either δ (Γ) < 2ρ or Γ ∈ (CT ), then
T1,β is bounded on Lp(M), p∈ (1,∞), provided that Reβ >(n−1)|1/p−1/2|.

(ii). If M belongs in the class (KS), then for α ∈ (0,1), Tα,β is bounded
on Lp(M) , provided that Reβ >αn|1/p−1/2|.

In a recent preprint [36], E. Parageorgiou, proves the analogue of Theorem
5 on a class of symmetric and locally spaces of any rank, but only for α ∈
(0,1).

Denote by T̂α,β the oscillating multiplier on M = Γ\X .
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Theorem 7 (PAPAGEORGIOU). Assume that α ∈ (0,1) and M = Γ\X be-
longs in the class (KS). Then,

(i) if β ≤ nα/2, then Tα,β (resp. T̂α,β ) is bounded on Lp(X) (resp. on
Lp(M)) for all p ∈ (1,∞), provided that β > αn|1/p−1/2|.

(ii) if β > nα/2, then Tα,β (resp. T̂α,β ) is bounded on Lp(X) (resp. on
Lp(M)) for all p ∈ (1,∞).

3 Oscillating multipliers on symmetric and locally sym-
metric spaces of any rank

It is worth mentioning that Giulini and Meda in [15] treat also the case α ≥ 1.
The case α = 1 is of particular interest since T1,β = ∆

−β/2
X ei∆1/2

X and thus
T1,β is related to the wave operator. For the proof of Theorem 7, and for the
Lp-boundedness of the part at infinity, we make use of K and S phenomenon,
while for the local part, which is "Euclidean", we proceed as Alexopoulos in
[1] and we express the local part of the oscillating operator in terms of the
heat kernel of X . This is the difficult part of the proof.

4 Schrödinger equations on manifolds

Let M be a Riemannian manifold and denote by ∆ its Laplace-Beltrami oper-
ator. The nonlinear Schrödinger equation (NLS) on M{

i∂tu(t,x)+∆xu(t,x) = F (u(t,x)) ,
u(0,x) = f (x) ,

(12)

has been extensively studied the last thirty years.
Its study relies on precise estimates of the kernel st of the Schrödinger

operator eit∆, the heat kernel of pure imaginary time.

4.1 Dispersive and Strichartz estimates

The estimates of st allow us to obtain dispersive estimates of the operator eit∆

of the form ∥∥eit∆
∥∥

Lq̃′ (M)→Lq(M)
≤ cψ (t) , t ∈ R, (13)
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for all q, q̃ ∈ (2,∞], where ψ is a positive function and q̃′ is the conjugate of q̃.
Dispersive estimates of eit∆ as above, allow us to obtain Strichartz esti-

mates of the solutions u(t,x) of (12):

‖u‖Lp(R;Lq(M)) ≤ c
{
‖ f‖L2(M)+‖F‖L p̃′(R;Lq̃′ (M))

}
, (14)

for all pairs
(

1
p ,

1
q

)
and

(
1
p̃ ,

1
q̃

)
which lie in a certain interval or triangle.

Strichartz estimates have applications to well-posedness and scattering
theory for the NLS equation. In the case of Rn, the first such estimate was
obtained by Strichartz himself [38] in a special case.

Then, Ginibre and Velo [13] obtained the complete rank of estimates ex-
cept the case of endpoints which were proved by Keel and Tao [24].

In view of the important applications to nonlinear problems, many at-
tempts have been made to study the dispersive properties for the correspond-
ing equations on various Riemannian manifolds.

In a recent paper Anker, Pierfelice and Vallarino [5] treat NLS in the con-
text of Damek-Ricci spaces, which include all rank one symmetric spaces of
noncompact type.

In [11], Fotiadis, Mandouvalos and M, treats NLS equations on a class of
rank one locally symmetric spaces.

5 The class (S) of locally symmetric spaces

We shall first describe the class (S) of rank one locally symmetric spaces on
which we shall treat NLS equations.

Denote by st the fundamental solution of the Schrödinger equation on the
symmetric space X :

−i∂tst (x,y) = ∆st (x,y) , t ∈ R, x,y ∈ X .

Then st is a K-bi-invariant function and the Schrödinger operator St = eit∆ on
X is defined as a convolution operator:

St f (x) =
∫

G
f (y)st(y−1x)dy = ( f ∗ st)(x) , f ∈C∞

0 (X). (15)
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Using that st is K-bi-invariant, we deduce that if f ∈C∞
0 (M), then St f is

right K-invariant and left Γ-invariant i.e. a function on the locally symmetric
space M. Thus the Schrödinger operator Ŝt on M is also defined by formula
(15).

5.1 Ingredients of the proof of the dispersive estimate

The first ingredient for the proof of the dispersive estimate (13) are precise
estimates of the Schrödinger kernel st on X . In the context of rank one sym-
metric spaces they are obtained by Anker, Pierfelice and Vallarino in [5].

The second ingredient is the K and S phenomenon: If κ is K-bi-invariant,
then

‖∗|κ|‖Lp(M)→Lp(M) ≤
∫

G
|κ (g)|ϕ−iηΓ

(g)s(p) dg. (16)

The third ingredient are norm estimates of the kernel ŝt of the Schrödinger
kernel on M which is given by

ŝt(x,y) = ∑
γ∈Γ

st(x,γy). (17)

One can prove that the series above converges when δ (Γ)< ρ .
The fourth ingredient are uniform asymptotics of the counting function NΓ

of Γ which is defined by

NΓ (x,y,R) = #{γ ∈ Γ : d (x,γy)≤ R} , x,y ∈ X ,R > 0,

where #(A) is the cardinal of the set A.

5.2 Asymptotic properties of the counting function

The asymptotic properties of the counting function in various geometric con-
texts have been a subject of many investigations since Margulis [32].

In [39], Yue obtain asymptotic properties of NΓ, in the context of Hadamard
manifolds with pinched negative sectional curvature and Roblin in [37] in the
more general context of CAT (−1) spaces.

Note that rank one symmetric spaces have pinched negative sectional cur-
vature and consequently they are contained in the above mentioned classes of
spaces.
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In [37, 39] it is proved, under some precise conditions on Γ, (for exam-
ple when Γ is convex co-compact), that NΓ satisfies the following uniform
asymptotics: there is a constant C > 0, such that for all x,y ∈ X ,

lim
R→∞

NΓ (x,y,R)
eδ (Γ)R

=C. (18)

It is important to say that for the proof of (18) we make use of the Patterson-
Sullivan densities, which, as it is already mentioned, they are known only in
the rank one case.

6 The class (S) of locally symmetric space

Definition 1. We say that a rank one locally symmetric space M = Γ\G/K
belongs in the class (S) if

1o for every K-bi-invariant function κ the estimate (16) is satisfied, (Kunze
and Stein),

2o δ (Γ)< ρ , and

3o the counting function NΓ (x,y,R) satisfies (18).

Remark 8. Note that if δ (Γ)< ρ , then λ0 = ρ2, (cf. Leuzinger, [27]).

Remark 9. So, if M ∈ (S), then the vector ηΓ appearing in (16) equals to 0.
Note also that if vol(M)< ∞, i.e., if M is a lattice, then λ0 = 0. So, condition
(ii) of class (S) implies that if M ∈ (S), then vol(M) = ∞.

6.1 Norm estimates of the Schrödinger kernel on M

If M ∈ (S), then using the expression (17) of the Schrödinger kernel ŝt(x,y) of
M and under the condition that NΓ (x,y,R) satisfies (18), we deduce, estimates
of the norm of the Schrödinger kernel of M,‖ŝt(x, .)‖Lq(M), q > 2, from the
corresponding ones on the symmetric space X = G/K,

This is the crucial step for the proof of the dispersive estimate (13) of the
operator Ŝt for M ∈ (S).

Finally, it is important to note that if M ∈ (S), then we are able to prove
the same results as in the case of the hyperbolic spaces [5].
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7 Dispersive and Strichartz estimates on locally sym-
metric spaces

We have the following dispersive estimate.

Theorem 8 (FOTIADIS, MANDOUVALOS, M.). Assume that M ∈ (S). Then
for all q, q̃ ∈ (2,∞], there is a constant c > 0 such that

‖Ŝt‖Lq̃′ (M)→Lq(M) ≤ c|t|−nmax{(1/2)−(1/q),(1/2)−(1/q̃)}, |t|< 1, (19)

and

‖Ŝt‖Lq̃′ (M)→Lq(M) ≤ c|t|−3/2, |t| ≥ 1. (20)

7.1 The Cauchy problem for the linear inhomogeneous Schrödinger
equation on M

Consider the following Cauchy problem for the linear inhomogeneous Schrö-
dinger equation on M:

{
i∂tu(t,x)+∆u(t,x) = F(t,x),
u(0,x) = f (x).

(21)

Combining the above dispersive estimate with the classical T T ∗ method
[13] we obtain Strichartz estimates for the solutions u(t,x) of (21):

Consider the triangle

Tn =
{(

1
p ,

1
q

)
∈
(
0, 1

2

]
×
(
0, 1

2

)
: 2

p +
n
q ≥

n
2

}
∪
{(

0, 1
2

)}
. (22)
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Figure 1: Admissible triangle on M

We say that the pair (p,q) is admissible if
(

1
p ,

1
q

)
∈ Tn.

Theorem 9 (FOTIADIS, MANDOUVALOS, M.). Assume that M ∈ (S). Then
the solutions u(t,x) of the Cauchy problem (21) satisfy the Strichartz estimate.

‖u‖Lp
t Lq

x
≤ c
{
‖ f‖L2

x
+‖F‖

L p̃′
t Lq̃′

x

}
, (23)

for all admissible pairs (p,q) and (p̃, q̃) corresponding to the triangle Tn.

As it is noticed by Anker, Pierfelice and Vallarino in [5], the above set
Tn of admissible pairs is much wider that the admissible set in the case of Rn

which is just the lower edge of the triangle.
This phenomenon was already observed for hyperbolic spaces in [6, 22].
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8 Final remarks

(i) Let us recall that in [31] Mandouvalos and M. we have also treated the Lp

boundedness of the Riesz transform on locally symmetric spaces.
(ii) In a recent preprint [12], A. Fotiadis, E. Papageorgiou prove estimates

of the derivatives of the heat kernel on symmetric spaces.
(iii) In September 2017, H. Wei Zhang [41], a student of J. Ph. Anker,

supported as a Master Mémoire at the Université of Paris-Sud (Orsay) our
work on Schrödinder equations on locally symmetric spaces.

(iv) In a recent preprint [42], H. W. Zhang treats the Wave and Klein–
Gordon equations on certain locally symmetric spaces.
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1 The Dirichlet Problem with continuous data

The Dirichlet Problem in Ω⊂Rn+1: If f ∈Cc(∂Ω) is a continuous function,
then u : Ω→ R is a solution to the Dirichlet problem if

∆u = 0 in Ω

u ∈C(Ω)

u|∂Ω = f .

Let Ω be a domain where the Dirichlet problem is solvable.

• Let u f be the solution to the Dirichlet problem with data f .
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• For x ∈Ω, f 7→ u f (x) is a linear functional.

• By Riesz Representation, there exists ωx
Ω

on ∂Ω s.t.

u f (x) =
∫

∂Ω

f dω
x
Ω.

The measure ωx
Ω

is called the harmonic measure in Ω with pole at
x ∈Ω.

Equivalently, the harmonic measure of a subset E of the boundary of a
domain Ω in Rn+1, is the probability that a Brownian motion started inside a
domain first hits ∂Ω at E.

2 The Dirichlet Problem with data in Lp

Let Ω be a subset of Rn. Given x ∈Ω, we define the cone

Γ(x) = {y ∈Ω : |x− y|< 2dist(y,∂Ω)}.

Also, if u : Ω→ C, set

N∗(u)(x) = sup
y∈Γ(x)

|u(y)|.

Definition 1. If f ∈ Lp(∂Ω)∩Cc(∂Ω), then u : Ω→ R is a solution to the
Dirichlet problem if

∆u = 0 in Ω

u|∂Ω = f on ∂Ω

‖N∗u‖Lp(∂Ω) := ‖supy∈Γ(·) |u(y)|‖Lp(∂Ω) ≤C‖ f‖Lp(∂Ω).

In domains with (not so!) regular boundaries, solvability of the Lp-
Dirichlet problem is equivalent with a scale-invariant absolute continuity con-
dition for harmonic measure w.r.t. the “surface" measure (i.e., the n-Hausdorff
measure on ∂Ω).

Definition 2. We say that ω ∈ weak-A∞(H n|∂Ω) if the following holds:
For all balls B and x ∈ Ω \ 4B, if E ⊂ B∩ ∂Ω such that H n(E) ≤ ε H n(B)
then ωx(E)≤ ε ′ωx(2B).
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3 Geometry of the boundary ∂Ω

Definition 3. A Borel set E ⊂ Rd is n-rectifiable if it is a countable union of
C1 graphs (or Lipschitz) up to a set of H n-measure zero.

Definition 4. E ⊂ Rd is n-AD-regular if ∀x ∈ E and ∀r ∈ (0,diam(E)).

C−1
0 rn ≤H n(B(x,r)∩E)≤C0 rn.

Definition 5. The set E ⊂ Rd is uniformly n-rectifiable if

• E is n-AD-regular

• ∃θ ,M > 0 s.t. ∀x∈E and ∀r ∈ (0,diam(E)) ∃gx,r : Bn(0,r)⊂Rn→Rd

an M-Lipschitz mapping s.t.

H n(E ∩B(x,r)∩gx,r(Bn(0,r)))≥ θrn.

4 Geometry of the domain Ω

Let Ω⊂ Rn+1 be open.

• A rectifiable curve γ ⊂ Ω connecting x ∈ Ω and y ∈ Ω is a C-cigar-
curve if min(`(x,z), `(z,y))≤Cdist(z,∂Ω) and has bounding turning
if `(γ)≤C|x− y|.

• A domain is C-uniform if any x ∈ Ω and y ∈ Ω can be connected by a
C-cigar-curve with bounding turning.

• A domain is C-semi-uniform if any x∈Ω and y∈ ∂Ω can be connected
by a C-cigar-curve with bounding turning.

• A domain is NTA if it is uniform and satisfies the exterior corkscrew
condition.

• A domain is chord-arc if it is NTA and has n-AD-regular boundary.
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5 Domains where the Lp-Dirichlet problem is solvable

• Bounded Lipschitz domains (Dahlberg ’77)

• Chord-arc domains (David, Jerison - Semmes ’90)

• Uniform domains with ADR boundary (Hofmann, Martell ’14-Azzam,
Hofmann, Martell, Nyström, Toro ’17)

• Semi-uniform domains with ADR boundary (Azzam ’18)

Question 1. What is the geometric characterization of the solvability of the
Lp-Dirichlet problem?

6 Uniform Rectifiability and Singular Integral Oper-
ators

Let K : Rd \{0}→ R be a kernel such that

• K(−x) =−K(x) (i.e., odd)

• K(λx) = λ−nK(x) (i.e. homogeneous of degree −n)

• there exits M ∈N such that |∇ jK(x)|.n C( j) |x|−n− j, for j∈{1, . . . ,M}.

For n-AD-regular measures µ consider singular integral operators (SIO) of
the form

TK,µ f (x) =
∫

K(x− y) f (y)dµ(y).

Theorem 1 (David-Semmes). The n-AD-regular measure µ is uniformly n-
rectifiable if and only if for all kernels K as above, the operator is bounded in
L2(µ) bounded.
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7 Uniform Rectifiability and Riesz Transform

Recall the

• Riesz kernel: K(x) = x
|x|n+1 , x 6= 0, and the

• Riesz transform: Rµ f (x) =
∫

K(x− y) f (y)dµ(y).

Question 2 (David-Semmes Problem). Let µ be an n-AD regular measure in
Rd . If the Riesz transform operator Rµ is L2(µ) bounded, then µ is uniformly
n-rectifiable?

• n = 1, Mattila, Melnikov, and Verdera, Ann. Math. ’96.

• n = d−1, Nazarov, Tolsa and Volberg, Acta Math. ’14.

• 2≤ n≤ d−2 still OPEN!

8 Riesz transform and harmonic measure

Assume we are in Rn+1, n≥ 2. Denote by

• E (x,y) = cn|x− y|1−n the fundamental solution for ∆, and by

• G(·, ·) the Green function in Ω, given by

G(x, p) = E (x− p)−
∫

E (x− y)dω
p(y). (1)

• Note that the Riesz kernel is given by

K(x) = c̃n ∇E (x).

• Hence, differentiating both sides of (1),

∇G(x, p) = ∇E (x− p)−
∫

K(x− y)dω
p(y)

= ∇E (x− p)−Rω
p(x).

So the Riesz transform is naturally connected to the harmonic measure
and the Green function.
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9 One-Phase Free boundary Problem for Harmonic
Measure

Theorem 2 (Hofmann, Le, Martell, Nystrom ’15–M. Tolsa ’15). Let Ω ⊂
Rn+1 open with the interior corkscrew condition and ADR boundary. If ω ∈
weak-A∞(H n|∂Ω), then ∂Ω is uniformly rectifiable.

Is uniform rectifiability enough to characterize Lp-solvability of the Dirich-
let problem? No! Bishop and Jones constructed an infinitely connected do-
main in C with uniformly rectifiable boundary with ω and H 1|∂Ω mutually
singular. Some connectivity is needed!

10 Corona decomposition

Given an n-AD-regular measure µin Rn+1 we consider the dyadic lattice of
"cubes” Dµ built by David and Semmes. A corona decomposition of µ is a
partition of Dµ into trees. Recall that a family T ⊂Dµ is a tree if it verifies
the following properties:

1o T has a maximal element (with respect to inclusion) Q(T ) which con-
tains all the other elements of T as subsets of Rn+1. The cube Q(T ) is
the “root” of T .

2o If Q,Q′ belong to T and Q ⊂ Q′, then any µ-cube P ∈ Dµ such that
Q⊂ P⊂ Q′ also belongs to T .

If R = Q(T ), we also write T = Tree(R).

11 Corona decomposition: PDE characteriaztion of
UR

Theorem 3 (Garnett, M., Tolsa). Let Ω⊂Rn+1 be a corkscrew domain with n-
AD-regular boundary. Denote by µ the surface measure on ∂Ω. The boundary
∂Ω is uniformly rectifiable if and only µ admits a corona decomposition Dµ =
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⋃
R∈Top Tree(R) so that the family Top is a Carleson family, that is,

∑
R⊂S:R∈Top

µ(R)≤C µ(S) for all S ∈Dµ ,

and for each R ∈ Top there exists a corkscrew point pR ∈Ω with

c−1`(R)≤ dist(pR,R)≤ dist(pR,∂Ω)≤ c`(R)

so that

ω
pR(3Q)≈ µ(Q)

µ(R)
for all Q ∈ Tree(R),

with the implicit constant uniform on Q and R.

12 Characterization of weak-A∞ condition for harmonic
measure

Definition 6. Given x ∈ Ω, y ∈ ∂Ω, and λ > 0, a λ -carrot curve (or just
carrot curve) from x to y is a curve γ ⊂Ω∪{y} with end-points x and y such
that δΩ(z) := dist(z,∂Ω)≥ κ H 1(γ(y,z)) for all z∈ γ , where γ(y,z) is the arc
in γ between y and z.

Definition 7. Ω satisfies the weak local John condition (with parameters
λ ,θ ,Λ) if there are constants λ ,θ ∈ (0,1) and Λ ≥ 2 such that for every
x ∈Ω there is a Borel subset

F ⊂ B(x,ΛδΩ(x))∩∂Ω)

with H n(F)≥ θ H n(B(x,ΛδΩ(x))∩∂Ω) such that every y∈F can be joined
to x by a λ -carrot curve.

Theorem 4 (Hofmann, Martell, ’18 and Azzam, M., Tolsa, ’18). Let Ω ⊂
Rn+1, n≥ 2, be an open set with n-AD-regular boundary satisfying the corkscrew
condition. Then the following are equivalent:

• harmonic measure for Ω is in weak-A∞

• ∂Ω is uniformly n-rectifiable and Ω satisfies the weak local John con-
dition

• Ω has big pieces of interior chord-arc subdomains.





90 years School of Mathematics A.U.Th. 203

Sub-Riemannian geometry:
a brief review

Ioannis D. Platis
Department of Mathematics and Applied Mathematics, University of Crete,

University Campus, 70013 Voutes Heraklion Crete, Greece
jplatis@math.uoc.gr

Abstract. We revise the basics of sub-Riemannian geometry. This is the bulk
of a talk given for the 90 years of the Department of Mathematics of the Aris-
totle University of Thessaloniki.

1 Introduction

Riemannian geometry is quite familiar to most of us. It is produced out of a
model space, i.e., a differentiable manifold endowed with an inner product at
its tangent bundle. In the sub-Riemannian geometry, we have again a manifold
as a model space, but this time we assume that there is a distribution with a
fibre inner product. Recall that a distribution is a family of k-planes, i.e.,
a linear subbundle of the tangent bundle of the manifold. The distribution
shall be called the horizontal tangent space and objects tangent to it shall be
called horizontal. In a sub-Riemannian world, the distance traveled between
two points is defined as in Riemannian geometry but here, we are allowed to
travel along horizontal curves which join the two points. These curves are that
which their velocity vector is always lying in the horizontal tangent space.
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We can trace the awakening of sub-Riemannian geometry in a theorem
of C. Carathéodory; this theorem is related to Carnot’s Thermodynamic laws.
The reasoning behind calling sub-Riemannian geometry as Carnot-Carathéo-
dory geometry by Gromov and others, lies exactly in that fact. Carathéodory’s
theorem is about codimension one distributions. Such a distribution is de-
fined by a single Plaffian equation ω = 0, where ω is a nowhere vanishing
1-form. Recall that this distribution is integrable if through each point there
passes a hypersurface which is everywhere tangent to the distribution. By the
celebrated Frobenius’ Theorem, an integrable distribution is involutive: for
codimension one distributions, this means that locally there exists functions λ

and f such that ω = λd f . In this case, any horizontal path passing through
a point p0 must lie in S = f (p0). Consequently, pairs of points p0 and p′0
that lie in different hypersurfaces cannot be connected by a horizontal path.
Carathéodory’s theorem is the converse of this statement.

Theorem 1. (C. Carathéodory) Let M be a connected manifold endowed with
a real analytic codimension one distribution. If there exist two points that
cannot be connected by a horizontal path then the distribution is integrable.

Carathéodory was asked to prove this theorem by the German physicist
Max Born; Born’s problem was to prove the second law of Thermodynamics
and the existence of the entropy function S. From the work of Carnot, Joules
and others it was known that there exist thermodynamic states A = p0 and
B = p′0 that cannot be connected to each other by adiabatic processes; these
are slow processes where no heat is exchanged. So to Carathéodory, and thus
to sub-Riemannian geometry, an adiabatic process is a horizontal curve and
the horizontal constraint is the Plaffian equation ω = 0. The integral of ω over
a curve is the net heat exchange undergone by the process represented by the
curve. So eventually, Carathéodory’s theorem implies the existence of inte-
grating factors λ = T and s = f so that ω = T dS (here, T is the temperature
and S is the entropy).

Carathéodory’s theorem also can be stated as follows: if a codimension
one distribution is not integrable, then any two points can be connected with
a horizontal path. In distributions of arbitary codimension, this generalises to
what is known as Chow’s thorem, see Section 2.3 for details. We shall only
make some comments now about Chow’s Theorem which is considered as the
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cornerstone of sub-Riemannian geometry. First, let us review Frobenius’ in-
tegrability theorem in its full force. Let M be an n-dimensional manifold and
D be a distribution of codimension n > k ≥ 1. Then D is called integrable if
through each point p lying on a plane of D , there is k-dimensional subman-
ifold tangent to that plane. It is called involutive if for every X and Y vector
fields of D , the Lie bracket [X ,Y ] ∈D .

Theorem 2. (Frobenius) Let M and D as above. Then D is integrable if and
only if is involutive.

In sub-Riemannian geometry we find ourselves in the opposite extreme of
integrability In a bracket generating or completely non integrable distribution
any tangent vector field may be written as the sum of iterated Lie Brackets
[X1, [[X2, [X3, ...]]] of horizontal vector fields. Chow’s theorem simply says
that for a completely non integrable distribution on a connected manifold,any
two points can be connected by a horizontal path. It follows that on a con-
nected sub-Riemannian manifold whose underlying distribution is non inte-
grable, the distance between any two points is finite, since there exists at least
one horizontal curve joining these two points. Summing up, sub-Riemannian
geometry is a riemannian geometry together with a constraint on admissible
directions of movements. In Riemannian geometry any smoothly embedded
curve has locally finite length. In sub-Riemannian geometry, a curve failing
to satisfy the obligation of the constraint has necessarily infinite length.

Not very surprisingly eventually, sub-Riemannian geometry is connected
to the Isoperimetric Problem (Dido’s problem, or Pappu’s problem). Dido’s
problem is formulated in the Aeneid, Virgil’s epos glorifying the beginning of
Rome:

Given a length, maximise the area of domains whose perimeter is this
length.

Dido, a princess of Phoenicia, fled across the Mediterranean sea with a
few servants and friends due to her entirely dysfunctional family: Her brother,
Pygmalion, murdered her husband and took all her possessions. Arriving pen-
niless in a part of a coast line of Africa ruled by king Jarbas, she persuaded
him to give her as much land as she could enclose with an oxide. Dido then
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smartly enclosed the simicircular city of Carthage. This is the solution to the
isoperimetric problem.

We shall now formulate this problem in mathematical terms. In R2 the
volume form is dvol = dx∧dy which is the differential da of the one form

a =
1
2
(xdy− ydx).

Using Stokes’ theorem we get that if a closed smooth positively oriented curve
γ in R2 encloses a domain Dγ = int(γ), then the area A (Dγ) is given by

A (Dγ) =
∫∫

Dγ

dx∧ dy =
∫

γ

a.

Therefore, Dido’s problem is:

Maximize
∫

γ
a under the condition l(γ) =

∫
γ

ds =
∫ b

c ‖γ̇(t)‖.

If we start from a curve γ(t) = (x(t),y(t)) in R2 such as γ(0) = (0,0), we
can lift it into a curve in R3 where the third coordinate z(t) is the signed area
enclosed to γ[0, t] and the segment from the origin to γ(t). That is,

z(t) =
∫

γ[0,t]
a =

1
2

∫
γ[0,t]

xdy− ydx.

Differentiating with respect to t we get

ż(t) =
1
2
(ẋ(t)y(t)− ẏ(t)x(t)).

Set ω = dz− 1
2(xdy− ydx) and consider curves

γ̃ = (γ1,γ2,γ3) γ̃ : [0,1]→ R3, γ̃(0) = (0,0,0).

Then lifted curves are exactly those which satisfy

γ̇ ∈ Kerω ⇐⇒ ω(γ̇(t)) = 0, t ∈ [0,1].

The form
ω = dz− 1

2
(xdy− ydx),
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is called the standard contact form. Recall that a contact form in a (2n+ 1)-
dimensional manifold is a 1-form ω satisfying

ω ∧ (dω)n 6= 0.

In the case of the standard contact form, ω ∧ (dω) = dx∧ dy∧ dz and the
distribution D determined by ω at each point p = (x,y,z) is

Dp = Ker(ωp) = {(υ1,υ2,υ3) ∈ R3 : υ3 =
1
2
(xυ2− yυ1)}.

Consider the following linear product in Dp: For υ ,w ∈Dp,

< υ ,w >= υ1w1 +υ2w2. (1)

Observe that < υ ,υ >≡ 0 if and only if υ1 = υ2 = 0, that is if the z-axis is
included in Dp ; this can never happen, therefore < Dot,Dot > is positively
defined. We now fix a frame {X ,Y,Z} where

X =
∂

∂x
− y

2
∂

∂ z
, Y =

∂

∂y
+

x
2

∂

∂ z
, Z =

∂

∂ z
, (2)

and we declare it orthonormal. Since

∂

∂x
= X +

y
2

Z ,
∂

∂y
= Y − x

2
Z,

we have on each Dp that

υ = υ1X +υ2Y +(
υ1

2
y− υ2

2
x+υ3)Z = υ1X +υ2Y

In this manner, a Riemannian metric is given by the linear product above.
In contact geometry, a curve γ is called Legendrian if

ω(γ̇) = 0 ⇐⇒ γ̇(t) ∈Dγ(t)

for all t in the domain of γ . Given a Legendrian curve γ , we define its length
l(γ) as the integral of the norm of γ̇ with respect to the linear product. In other
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words, l(γ) is exactly the Euclidean length of prC(γ), the projection of γ into
the plane. We may now introduce a new distance in R3: For p,q ∈ R3,

dcc(p,q) = inf{l(γ) : γ Legendrian joining p and q}.

Do Legendrian joining curves exist? To connect, say (0,0,0) and (x,y,z),
take a curve γ in R2 from (0,0) to (x,y) with the property that the signed area
engulfed by γ and the line segment from (0,0) to (x,y) is exactly z. Then, the
lifted curve γ̃ will connect (0,0,0) and (x,y,z). Now the Riemannian length
of γ̃ equals the Euclidean length of γ . Thus there is a correspondence between
dcc geodesic (i.e.. a curve realising the infimum) and solutions of the dual
Dido’s problem: Fix a value for the area and minimize the perimetre.

One of the most standard examples of sub-Riemannian objects is the Hei-
senberg group. Perhaps the most crucial property of its geometry that we are
about to define is that it is isometrically homogeneous. We may endow R3

with a group structure different from the standard Euclidean one in a way that
all previous constructions are preserved by the action of the group onto itself.
Consider the group law

(x,y,z)∗ (x′,y′,z′) = (x+ x′,y+ y′,z+ z′+
1
2
(xy′− yx′). (3)

It can be shown that left translations L(s,t,u) defined by L(s,t,u)(x,y,z)= (s, t,u)∗
(x,y,z) preserve the distribution D and the orthonormal basis {X ,Y,Z} as in
(2).

Proposition 1. Heisenberg geometry is isometrically homogeneous. The Hei-
senberg group has a Lie group structure so that left translations are isometries
with respect to the contact distance dcc.

The Heisenberg group has also a (nilpotent, non Abelian) matrix group
model. This is described by the subgroup G < GL(3,R), where

G =


1 a c

0 1 b
0 0 1

 : a,b,c ∈ R

 .
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Its Lie Algebra is

g=


0 a c

0 0 b
0 0 0

 : a,b,c ∈ R


and a basis for g is

X =

0 1 0
0 0 0
0 0 0

 ,Y =

0 0 0
0 0 1
0 0 0

 ,Z =

0 0 1
0 0 0
0 0 0

 .
One parameter subgroups are of the form

γ(a,b,c)(t) = exp(t

0 a c
0 0 b
0 0 0

) = ∑
∞
t=0 tn

0 a c
0 0 b
0 0 0

n

=

= I + t

0 a c
0 0 b
0 0 0

+ t2

0 0 ab
0 0 0
0 0 0

=

1 at act +abt2

0 1 bt
0 0 1

 (Why?)

The map

φ : (x,y,z) 7→

1 x z+ 1
2 xy

0 1 y
0 0 1


is a Lie group isomorphism from the Lie group R3 with product (3) to the
Lie group G with the usual matrix product. Straightforward calculations show
that φ is a group homomorhpishm and that its differential at the identity is
the identity matrix. More than this is true. Heisenberg group is a two-step
nilpotent 3 dimensional Lie group and there are only two simply connected
nilpotent Lie groups of dimension 3: The Heisenberg group and the Euclidean
group.
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2 Elements of the general theory of sub-Riemannian
geometry

2.1 Basics

We shall denote a metric space by (X ,d), where X 6= /0 is a set and d is a
distance. A path (or curve) γ is continuous map γ : I 7→ X where I is an
interval [a,b] of R. The length of γ is defined by

l(γ) = sup

{
n

∑
i=1

d(γ(ti),γ(ti−1)) : n ∈ N,a = t0 < t1 < ... < tn = b

}
.

A rectifiable curve is a curve of finite length. A curve γ is called a geodesic
if for all t1, t2 ∈ [a,b],

l(γ[t1, t2]) = |t2− t1|

The metric space (X ,d) is said to be a path metric space if for all x,y ∈ X ,

d(x,y) = inf{l(γ),γ joins x,y}.

If the above infimum is attained by a geodesic then (X ,d) is called a
geodesic metric space. A criterion for a path metric space to be geodesic
is the following:

Theorem 3. (Hopf-Rinow-Cohn Vossen) A path metric space (X ,d) which is
complete and locally compact is geodesic.

A function f : (X ,dX) 7→ (Y,dY ) is called Lipschitz if

∃K > 0 : dY ( f (x1), f (x2))≤ KdX(x1,x2)

for all x1,x2 ∈ X . It is locally Lipschitz if for every x ∈ X there exists a neigh-
bourhood Ux such that f |Ux is Lipschitz. If there exists a K ≥ 1 such that

1
K

dX(x1,x2)≤ dY ( f (x1), f (x2))≤ KdX(x1,x2),
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for all x1,x2 ∈ X , then f is called bi-Lipschitz (or, more accurately, K-bi-
Lipschitz). A K-bi-Lipschitz map is a homeomorphism onto its image. Isome-
tries are 1-bi-Lipschitz maps.

Let S⊂ X and m > 0. Define for δ > 0 the sets

Hm
δ
(S) = inf

{
∞

∑
i=1

diam(Ui)
m :

∞⋃
i=1

Ui ⊂ S, diam(Ui)
m < δ

}
.

Then,
H m(S) = sup

δ>0
Hm

δ
(S) = lim

δ→0
Hm

δ
(S),

is the m-dimensional ıHausdorff measure on S. The Hausdorff dimension of S
is then

dimHaus(S) = inf{d ≥ 0 : H m(S) = 0}= sup{{d ≥ 0 : H m(S) = ∞}∪{0}}.

Let now M be a differentiable manifold of dimension n. For p ∈ M, the
fibre Tp(M) of the tangent bundle T M is a derivation of germs of C ∞ functions
at p, i.e. ,an R-linear map from C ∞(p) to R satisfying the Leibniz rule. Sup-
pose that F : M 7→N is a smooth mapping between manifolds and p∈M. Then
the differential (Fp)∗ : Tp(M) 7→ TF(p)(N) is defined as follows: If X ∈ Tp(M),

F∗,p(X)( f ) = Xp( f ◦F) , for all f ∈ C ∞(F(p)).

Let Γ(T M) be the linear space of smooth vector fields, that is, smooth sections
of T M. For X ,Y ∈ Γ(T M), their Lie Bracket [X ,Y ] is defined by

[X ,Y ] f = X(Y f )−Y (X f ), f ∈ C ∞(M).

The set Γ(T M) together with [·, ·] is a Lie algebra. If F : M 7→ N is a smooth
and invertible, then for X ∈ Γ(T M) the push-forward vector field is defined
by

(F∗X)F(p) = (F∗,p)(Xp), p ∈M.

The push forward commutes with the Lie Bracket:

[F∗X ,F∗Y ] = F∗[X ,Y ], X ,Y ∈ Γ(T M).
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If F : M 7→ N and γ is a smooth curve, then

(F∗,γ(t))(γ̇(t)) =
d(F ◦ γ)

dt
,

where γ̇(t) ∈ Tγ(t)M and d(F◦σ)
dt ∈ TF(σ(t))(N). If f ∈ C ∞(M), by identifying

Tf (p)(R) with R, we may write

d fp(X) = Xp( f ), X ∈ Γ(T M)

A Riemannian metric on M is a family of positive definite inner products

gp : Tp(M)×Tp(M) 7→ R, p ∈M,

such that for all X ,Y ∈ Γ(T M) the function

p 7→ gp(Xp,Yp) is differentiable.

In a local coordinate system {Up,x1, ...,xn}, the vector fields{
∂

∂x1
, ...,

∂

∂xn

}
,

form a basis for the tangent vectors at Up. The components of the metric
tensor with respect to the coordinate system are

(gi j)p = gp

((
∂

∂xi

)
p
,
(

∂

∂x j

)
p

)
,

or, equivalently,
g = ∑

i, j
gi jdxi⊗dx j.

The pair (M,g) is called a Riemanniann manifold.
A Finsler structure on a differentiable manifold M is given by a function

‖ · ‖ : T M 7→ R

which is smooth on the complement of the zero section of T M and its re-
striction to each fiber Tp(M) is a symmetric norm. A Riemannian manifold
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has a naturally induced Finsler structure: ‖X‖ = g1/2(X ,X). Connected Rie-
mannian and Finsler manifolds carry the structure of path metric spaces. If
(M,‖ · ‖) is a connected Finsler manifold and γ : [a,b] 7→M is a parametrised
curve in M which is differentiable with velocity vector γ̇ , then the length of γ

is defined by

l(γ) =
∫ b

a
‖γ̇(t)‖dt.

Since we may always parametrise γ by its arc length, l(γ) does not depend on
the parametrisation. The distance function d : M×M 7→ [0,+∞) is given by

d(p,q) = inf{l(γ), γ differentiable, joining p,q}.

The distance d satisfies all the properties of a distance function in a metric
space. To prove the property d(p,q) = 0⇒ p = q on a Riemannian manifold
M, we use normal coordinates which also show as that the manifold M and
the metric space (M,d) have the same topology. If M is Finsler, one shows
that any Finsler structure is locally bi-Lipschitz, equivalently to a Riemannian
structure.

2.2 Carnot-Carathéodory distance

Let (M,‖ · ‖) be a Finsler manifold and suppose that D is a distribution on
M. Then the triple (M,D ,‖ · ‖) is called a subFinsler manifold; if the Finsler
structure is Riemannian than we are in the case of sub-Riemannian manifold.
An absolutely continuous curve γ in M is said to be horizontal with respect to
D if γ̇(t) ∈D for almost all t.The length of γ is

lh(γ) =
∫ 1

0
‖γ̇(t)‖dt.

We consider the metric on M induced by D and ‖ · ‖. For p,q ∈M,

dcc(p,q) = inf{lh(γ) : γ horizontal from p to q}.

This is the (Finsler) Carnot-Carathéodory distance.
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2.3 Hörmander’s condition-statement of Chow’s Theorem

A distribution D ⊂T M is called bracket generating if any local frame {X1, ...,Xk}
for D together with all of its iterated Lie brackets

[Xi,X j], [Xi, [X j,Xk]], . . . ,

spans T M. If D
( j)
p is the span of all contents of order ≤ j, then the above is

exctly Hörmander’s condition:

Tp(M) = D
( j)
p , j ∈ N.

The metric or Hausdorff dimension is

∑
j

j(dimD j
p−dimD j−1

p ).

A bracket generating distribution (that is, a distribution that satisfies Hör-
mander’s condition) lies on the extreme opposite of an integrable distribution.
We now state Chow’ Theorem:

Theorem 4. (Chow 1959, Rashevskyi 1938) If D is a bracket generating dis-
tribution on a connected manifold M, then any two points of M can be con-
nected by a horizontal path.

In the case of Heisenberg group H , equations [X ,Y ] = Z, [X ,Z] = [Y,Z] =
0 and Chow’s theorem guarantee that we can connect any two points by a
horizontal path.

The next two theorems are essentially equivalent versions of Chow’s The-
orem.

Theorem 5. If D is bracket generating on M, than the topology of M induced
by the cc-distance is the manifold topology.

The endpoint map associated to D and which is based at a point p0 ∈M is
the map that takes each horizontal curve with starting point p0 to its endpoint.

Theorem 6. If D is bracket generating, then the endpoint map is open.
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For any distribution D on M and for any point p0 ∈M, the accessible set
A(p0) is the image of the endpoint map associated to D with starting point
p0.

Below we shall present a sketch of the proof of Chow’s Theorem; prior to
this we remark that its converse fails. There are distributions which are not
bracket generating but still are horizontally path connected.

2.4 Proof of Chow’s Theorem-sub-Riemannian Hopf-Rinow

We fix a point p and let X ∈D . Consider the curve γ solving the d.e.

γ(0) = p γ̇(t) = Xγ(t).

Then γ is a horizontal curve and Xp is tangent to A(p). Therefore, the whole
Dp is tangent to the accessible set A(p). We assume for the moment that A(p)
is an embedded submanifold of M. Then its tangent space TpA(p) is closed
under the Lie bracket. That is, the Lie span of Cp(M) is tangent to A(p).
Therefore, dim(M) = dim(A(p)) and A(p) is the whole of M.

Note that the crucial step for the proof of Chow’s Theorem is the asser-
tion that A(p) is an embedded submanifold. This holds true by a theorem of
Sussmann (1973).

Theorem 7. (Sub-Riemannian Hopf-Rinow) If D is bracket generating then
sufficiently neighbouring points can be joined by a dcc geodesic. Moreover,
if M is connected and (M,dcc) is complete, then any two points of M can be
joined by a dcc geodesic.

Proof. By Theorem 5, the topology induced by the dcc metric is the mani-
fold topology. In particular, the space is locally compact. Applying Arzela-
Ascoli’s Theorem in a compact ball we obtain the existence of geodesics at a
small scale. Applying the Hopf-Rinow Theorem for complete, locally com-
pact length spaces, we obtain the existence of global geodesics.

2.5 Ball-box theorem and Hausdorff dimension

Let D ⊂ T M a distribution. We shall make the following assumptions:
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1o There exist X1, ...,Xn ∈ Γ(T M) such that for all p ∈M,

{X1, ...,Xκ}p,

is a basis for Dp and
{X1, ...,Xn}p,

is a basis for Tp(M).

2o For all j = 1, ...,n there exists a d j ∈ N, (the degree of X j), such that

(X j)p ∈ ∆
[d j]
p \∆

[d j−1]
p , ∀p ∈M,

where ∆[d j] is the space of commutators of X1, ...,X j of order d j.

The latter condition is a regularity assumption for D ; endowed with this
condition D is called equiregular.

We shall parametrise M using flows of linear sums of vector fields in D .
Recall that, for p ∈M and X ∈ Γ(T M), the exponential map

expp(X) = γ(1),

the value at time 1 of the integral curve γ of the vector field starting at p, i.e.,
the solution of

γ̇(t) = Xγ(t) , γ(0) = p.

For fixed p ∈M, exponential coordinates are defined by Φ : Rn 7→M, where

Φ(t1, ..., tn) = expp(t1X1 + ...+ tnXn).

This map is in general only local, that is, defined around a neighbourhood of
0 ∈ Rn.

The box with respect to X1, ...,Xn is

Box(r) = {(t1, ..., tn) ∈ Rn : |t j| ≤ rd j}.

The following theorem, which isdue to Mitchell, Gershkovic, Nagel-Stein-
Wainger, etal., compares boxes Box(r) in Rn with cc balls Bcc(p,r):
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Theorem 8. (Ball-box theorem) Let (M,D ,‖ · ‖) be a sub-Finsler manifold
with an equiregular distribution D . Let Φ be an exponential coordinate map
from a point p ∈M constructed with respect to some regular basis X1, ...,Xn.
there exist c > 1 and p > 0 such that

Φ(Box(c−1r))⊆ B(p,r)⊆Φ(Box(cr)), ∀r ∈ (0, p).

We note the following open question:

Are all (sufficiently-small) Finsler balls and spheres homeomorphic to the
usual Euclidean balls and spheres?

An almost direct corollary to the Ball-Box Theorem is that locally, each
sub-Finsler manifold is Hölder equivalent to a Riemannian manifold. To see
this, let (M,D ,‖·‖) be the manifold in question. Let g be a Riemannian tensor
whose norm is smaller than ‖ · ‖ and denote by dR the Riemannian distance.
The identity map id : M 7→M is 1-Lipschitz with respect to dcc, dr and thus it
is Hölder. Let now Al pha = max j d j be the maximum of the degrees d j of the
vector fields of some equiregular basis {X j}. Since for p ∈ (0,1), we have

n

∏
j=1

[−ra,ra]⊂ Box(r)

and since the exponential maps have surjective differentials at the origin, from
the second inclusion of the Ball-Box theorem we obtain that id : (M,dR) 7→
(M,dcc) is a-Hölder.

We shall denote by Q the homogeneous (Hausdorff) dimension

Q =
n

∑
j=1

d j =
n

∑
j=1

j(dim∆
( j)−dim∆

( j−1)).

If a sub-Finsler manifold (M,D ,‖ · ‖) has equiregular distribution then

dimHaus(M,dcc) = Q.

Moreover,the Q-Hausdorff measure of (M,dcc) is locally equivalent (up to
multiplication by a function) to the Finsler volume form.
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It is natural to ask how to compute Hausdorff dimension and Hausdorff
measure of submanifolds of sub-Finsler manifolds with respect to the cc dis-
tance. These questions were answered by Gromov and Magnani, the first in
full, the second only partially.

Theorem 9. (Gromov) Let (M,D ,‖ · ‖) be a sub-Finsler manifold with an
equiregular distribution D and cc distaance dcc. Let Σ ⊂ M be a smooth
submanifold. Then

dimHaus(Σ,dcc) = max

{
n
∑
j=1

j dim
[
(Tp(M)∩∆ j(p))\ (Tp(M)∩∆( j−1)(p))

]
: p ∈ Σ

}
.

The question of finding the Hausdorff dimension of smooth submanifolds
is yet to be answered in full.

3 Carnot groups

3.1 Review of Lie groups and Lie algebras

A Lie group G is a differentiable manifold with a group structure such that the
map

G×G 7→ G

(x,y) 7→ x−1y,

is smooth. We shall denote by e the identity element. Rg(h) = hg and Lg(h) =
gh are right and left translations by g in G, respectively. The set of vector
fields Γ(T G) from a Lie algebra; the bilinear operation is the Lie bracket:
[·, ·] : g×g 7→ g such that for all X ,Y,Z ∈ g,

1o [X ,Y ] =−[Y,X ]and

2o [X , [Y,Z]]+ [Y, [Z,X ]]+ [Z, [X ,Y ]] = 0.

There is a special Lie algebra associated to a Lie group G, that is, the tan-
gent space Te(G). In brief, each element of Te(G) is extended to an element
of Γ(T G) by left translations to produce vector fields X ∈ Γ(T G) such that
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(Lg)∗X = X for all p ∈ G. Then (Lg∗,p)X = XLg(p) and we have an isomor-
phism

Te(G) 7→ g (=left invariant vector fields)

V 7−→ Xg = (Lg)∗V.

A Lie group homomorhpism F : G 7→ H is a C ∞ group homomorphism. A
map Φ : g 7→ h is a Lie algebra homomorhism if it is linear and preserves
brackets: Φ([X ,Y ]) = [Φ(X),Φ(Y )] for all X ,Y ∈ g. A Lie group homomor-
phism induces a Lie algebra homomorphism: We have F(e) = e and the dif-
ferential:

(F∗)e : Te(G) 7→ Te(H)

preserves brackets. For the converse we have the following:

Proposition 2. Let G and H be two Lie groups with Lie algebras g andh,
respectively. Assume that G is simply connected. If /0 : g 7→ h is a Lie algebra
homomorhpism, then there exists a unique Lie group homomorphism F : G 7→
H such that F∗ = /0.

The above implies that if Lie groups G and H have isomorphic Lie alge-
bras and both are simply connected, then G and H are isomorphic.

By a theorem of Ado, every Lie algebra has a faithful representation in
gl(n,R) for some n∈N. Hence, if g is a Lie algebra, then there exists a simply
connected group G with Lie algebra g. Therefore, isomorphism classes of
Lie algebras are into 1–1 correspondence with isomorphism classes of simply
connected Lie groups.

Recall the definition of the exponential map is an arbitary manifold M. Let
X ∈Γ(M) be a vector field and fix a point p∈M of the manifold. Then there is
a unique curve γ(t) such that γ(0) = p and γ̇(t) = Xγ(t). Then expp(X) = γ(1).
In general expp is locally defined: It only takes a small neighbourhood of the
zero section of T M to a neighbourhood Up of M. In Lie groups though, exp is
a map g 7→ G and g⊂ Γ(T G) with the definition making sense for p = e, and
is also defined globally. The following holds:

Theorem 10. Let X ∈ g be an element of the Lie algebra g of a Lie group G.
Then
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1o exp((s+ t)X) = exp(sX) · exp(tX), s, t ∈ R.

2o exp(−X) = (exp(X))−1.

3o exp : g 7→ G and (exp)∗ = idg : g 7→ g. Therefore there exists a diffeo-
morhpism of a neighbourhood of 0 in g onto a neighbourhood of e in
G.

4o The curve γ(t) = exp(tX) is the flow of X at time t starting from e. More
generally, the curve g(exp(tX)) = Lg(γ(t)) is the flow starting at g.

5o The flow of X at time t is the right translation Rexp(tX)

We also have

Theorem 11. If F : G 7→ H is a Lie group homomorphism, then

F ◦ exp = exp◦F∗.

Note that in case where G is compact, it also has a Riemannian metric
invariant under left and right translations. Then the Lie group exponential
map is the Riemannian exponential map of this Riemannian metric.

3.2 Nilpotent Lie groups and nilpotent Lie algebras

Let g be a Lie algebra over R. The central series of g are

g(1) = g, g(i+1) = [g,g(i)].

The Lie algebra g is called nilpotent if there is an integer s such that
g(s+1) = 0. The minimal s for which g(s+1) = {0} is called the step of g.
A nilpotent Lie group G is a Lie group whose Lie algebra is nilpotent. If g is
s-step nilpotent, then we have the following for the centre Z(gs):

Z(gs) = {X ∈ g(s) : [X ,Y ] = 0, for all Y ∈ g(s)}= g(s),

that is, g(s) (and all g(k),k≤ s) are central. It is worth to remark here that a Lie
algebra g has always non-trivial centre. In fact, the centre

Z(G) = {g ∈ G : gh = hg,∀h ∈ G}

is a closed subgroup with Lie algebra Z(g) if G is connected.
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Remark 10. The Heisenberg group is a 2-step nilpotent Lie group.

3.3 Simply connected nilpotent Lie groups

Recall that if two simply connected Lie groups have isomorphic Lie algebras
then they are isomorphic. In the case of nilpotent connected and simply con-
nected Lie groups we have the following:

Theorem 12. Let G be a connected, simply connected nilpotent Lie group
with Lie algebra g. Then:

1o The exponential map exp : g 7→ G is an analytic diffeomorphism.

2o The Baker-Campbell-Hausdorff (BCH) formula holds for all X ,Y ∈ g.

The BCH formula (which is quite complicated to be written down here)
allows us to locally reconstruct any Lie group G with its multiplication law,
by only knowing the structure of its Lie algebra g. It expresses the inverse of
the exponential (which quite naturally we shall denote by Log) of the product
of two Lie group elements as a lie algebra elements, that is

Log(eX · eY) = an element of g.

Below we state various consequences of this theorem:

• Every Lie subgroup H of a connected, simply connected nilpotent Lie
group G is closed and simply connected.

• Every connected, simply connected Lie group which is nilpotent has
a faithful embedding as a closed subgroup of the group Nh whose Lie
algebra are the strictly upper triangular matrices.

• With the aid of the exponetial map, we may identify G and g when G is
a simply connected, connected nilpotent Lie group. In this manner, we
may transfer coordinates from g to G.
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3.4 Carnot groups

A Carnot group with step s ≥ 1 is a connected, simply connected nilpotent
Lie group whose Lie algebra admits a unique up to isomorphism step s strati-
fication. That is,

g =V1⊕ ...⊕Vs with

[Vj,V1] =Vj+1,1≤ j ≤ s−1,Vs 6= {0}

We remark that there exist simply connected nilpotent Lie groups which are
not Carnot groups: For instance, there exist 6-dimensional nilpotent Lie alge-
bras that cannot be stratified.

The topological dimension of a Carnot group G is n = ∑i dimVi whereas
its homogeneous dimension is

Q =
s

∑
i=1

idimVi.

In fact, each Carnot group may be equipped with a sub-Riemannian structure
which is unique up to bi-Lipschitz equivalence and has an additional property
which we shall explain later. Fix a stratification for G and let D be a left
invariant subbundle of T G which is such that De = V1. Let ‖ · ‖ be any left
invariant Finsler norm on G. The triple (M,D ,‖ ·‖) is a sub-Finsler manifold,
since

∆
( j)
e =V1⊕ ...⊕Vj

satisfies Hörmander’s condition. Thus one may consider the cc distance dcc

associated to this sub-Finsler structure. Another choice of the norm does not
effect the bi-Lipschitz equivalence class of the sub-Finsler manifold. If ‖ · ‖l
is another left invariant Finsler norm then

id : (G,dcc,‖·‖) 7→ (G,dcc,‖·‖l )

is globally bi-Lipschitz. For that reason, we may assume that ‖ · ‖ is coming
from the usual scalar product.

It is quite clear that the value of the scalar product in V1 is important for
the definition of the dcc metric. If m = dimV1, we fix X1, ...,Xm at V1. Then,

dcc(x,y) = inf

{∫ 1

0

√
n

∑
i=1
|γi(t)|2dt : γ(0) = x,γ(1) = y

}
,
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where the infinum is taken over all absolutely continuous curves such that
γ : [0,1] 7→ G and

γ̇(t) =
m

∑
i=1

γi(t)(Xi)γ(t) t ∈ [0,1].

We conclude this section by presenting an additional structure of Carnot
groups, that is, their dilation structure. Let g =V1⊕ ...⊕Vs, and λ > 0. Dila-
tions δ̃λ are defined by the homogeneity conditions

δ̃λ X = λ
kX , ∀X ∈Vk,1≤ k ≤ s.

These are self maps of g and we may equivalently write

δ̃λ (
s

∑
i=1

Vi) =
s

∑
i=1

λ
iVi,

whenever X = ∑
s
i=1Vi with vi ∈Vi, 1≤ i≤ s.

Using the fact that exp : f g 7→ G is a diffeomorphism, we may define
δλ : G 7→G by exp◦ δ̃λ = δλ ◦exp. Below we list some properties of dilations:

• δλ (xy) = δλ (x) ·δλ (y), for allx,y∈G. This follows from BCH formula.

• δλ ◦δµ = δλ µ .

• (δλ )∗X = δ̃λ X .

• δ̃λ ([X ,Y ]) = [δ̃λ X , δ̃λY ].

• dcc(δλ x,δλ y) = λdcc(x,y), for allx,y ∈ G.

Nilpotentation

Nilpotentation is the procedure where a Carnot group appears as tangent to
an equiregular distribution. Let D be a bracket generating and equiregular
distribution in a manifold M ,i.e.,

D = D (1) ⊂D (2) ⊂ ...⊂D (s) = T M,
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is a sequence of subbundles of T M where

D ( j+1) = D ( j)+[D ,D ( j)].

The sum is not necessarily direct. The crucial fact here is

[D (k),D (1)]⊂D (k+1).

This relation is obvious for k = 1. The above relation may be proved by
induction using Jacobi’s identity.

We now define H1 =D and H j =D ( j)\D ( j−1), j = 2, ...,n. H j are bundles
but not subbundles of T M for j ≥ 1. It is clear that

T M '
s⊕

i=1

Hi.

The following holds:

Theorem 13. For each p ∈M , TpM inherits the structure of a Carnot group
with respect to the stratification H j(p) .This Carnot group is the nilpotentation
of Tp(M) with respect to D .

Proof. Let Vj = H j(p). Then

Tp(M)∼=V1⊕ ...⊕Vs.

We need to define a Lie algebra product and then show that [Vj,V1] = Vj+1.
Let x,y ∈ Tp(M) with x ∈Vj and y ∈V1.

Since
Vj = H j(p) = D

( j)
p \D ( j−1)

p ,

there exist a X ∈D ( j) and a Y ∈D (l) such that

x = Xp +D
( j−1)
p , y = Yp +D

(l−1)
p .

We then define
[x,y] = [X ,Y ]p +D

( j+l−1)
p .
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This bracket is well defined: If u ∈ D
( j−1)
p , then [X + u,Y ] = [X ,Y ] + [u,Y ],

with
[u,Y ] ∈ [D ( j−1),D (l)]⊂D ( j+l−1).

Therefore, [X +u,Y ]p = [X ,Y ]p mod D
( j+l−1)
p .

Now, if y ∈ V1, [x,y] ∈ D
( j+1)
p \D ( j)

p = Vj+1 and thus [Vj,V1] ⊆ Vj+1. To
show the reverse inclusion, let z ∈ D ( j+1) such that z = Zp +D

( j)
p . By defi-

nition ,D ( j+1) = D ( j)+[D ,D ( j)] so there exist a W ∈ D ( j),Xl ∈ D ( j),Yl ∈ D
such that Z =W +∑l[Xl,Yl]. Take

xl = (Xl)p mod D ( j−1) , yl = (Yl)p.

One then shows that ∑l[Xl,Yl] =Zp mod D
( j)
p and therefore Vj+1⊆ [Vj,V1].

3.5 Mitchell’s theorem

We start with Gromov’s notion of tangent space to a metric space. Given a
metric space (X ,d), consider the dilated metric space (X ,λd) , λ > 0. The
distance λd is given by

(λd)(p,q) = λd(p,q), p,q ∈ X .

A metric space (Z,ρ) is tangent to (X ,d) at p ∈ X if there exists a p̄ ∈ Z and
a sequence λ j→ ∞ such that

lim
j
(X , p,λ jd) = (Z, p̄,ρ).

We may understand this definition in terms of Gromov-Hausdoff distance.
Let B1,B2 be compact metric spaces. Then

GH(B1,B2) = inf
Ψ1,Ψ2

H(Ψ1B1,Ψ2B2)

over all isometric embeddings Ψ1,Ψ2 of B1,B2, respectively, into the same
metric space C of the Hausdorff distance H(Ψ1B1,Ψ2B2) of their images as
subsets of C. In this way the definition of tangent to a metric space implies
that for each r > 0, there exists a sequence ε j→ 0 such that the ball of radius
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r + ε j in (X ,λ jd) about the point p converges to a ball of radius r about p̄.
Namely,the infinum of the GH distance between those compact abstract metric
spaces tends to 0 as λ j→ ∞.

A distribution D is called generic, if for each j, dimD
( j)
p is independent

of p ∈M.

Theorem 14. (Mitchell) For a generic distribution D on M, the tangent cone
of a sub-Riemannian manifold (M,dcc) at p∈M is isometric to (G,d∞) where
G is a Carnot group with a left-invariant cc metric. In fact, G is the nilpoten-
tation of Tp(M) with respect to D .

We remark the following:

• The tangent(or the tangent cone) to a Carnot group G is G itself. G
admits dilations δλ which provide isometries between (G,dcc) and (G,
λdcc).

• In contrast to the Riemannian case where the exponential map is a
locally biLipschitz map between the tangent cone and the manifold,
Mitchell’s map is not in general locally biLipschitz.

Pansu in 1985 and later Margulis and Mostow in 1995 explained why the latter
happens, as we shall see in the following section.

3.6 Pansu’s Rademacher theorem

Theorem 15. (Pansu,Margulis-Mostow) For the typical sub-Riemannian man-
ifold there is no bi-Lipschitz map between a neighbourhood of a point of the
manifold and its nilpotentiation at this point.

The classical Rademacher theorem in real analysis asserts that a Lips-
chitz map between Euclidean spaces is a.e. differentiable. Pansu(1989) ex-
tended the theorem to the setting of Carnot groups endowed with their sub-
Riemannian distance function. Let F : G1 7→G2 be a map between two Carnot
groups with dilations δt : Gi 7→Gi , i= 1,2. For g,h∈G1, the pansu derivative
is defined by

DpF(g)(h) = lim
t→0

(δ−1
t )(F(g)F(gδth)).



90 years School of Mathematics A.U.Th. 227

Note that if the Gi’s are Abelian Carnot groups (that is, vector spaces with
vector addition as the multiplication),the Pansu’s derivative DpF is the usual
derivative. In general, if the Pansu derivative exists and is continuous then it
is a group homomorphism from G1 to G2.

Theorem 16. (Pansu’s Rademacher theorem) At almost all points, the tangent
map of a Lipschitz map between sub-Riemannian manifolds exists, it is unique,
and is a group homomorphism of the tangent and equivariant with respect to
dilations.

We have seen above that in the Carnot group setting, the tangent map
is just Pansu’s differential. Let us clarify what we mean by a tangent map
between tangent cones. Each map f : (X ,d) 7→ (X ′,d′) induces a map fλ :
(X ,λd) 7→ (X ′,λd′) for each λ > 0. Setwise,this is the map fλ (x). For fixed
x ∈ X ,assume that (Z,ρ) and (Z′,ρ ′) are tangent cones to (X ,d) at x and to
(X ′,d′) at f (x),respectively then D f : (Z,ρ) 7→ (Z′,ρ ′) is a tangent map of f
at x if for some sequence λ j→ ∞ , fλ j converges to D f uniformly at compact
sets.

• With this definition, the tangent map can not be unique or even linear.
But for Lipschitz maps between sub-Riemannian manifolds, Pansu’s-
Rademacher theorem states that not only a tangent map exists at almost
every point, but also that outside a small set the limit is a Lie group ho-
momorphism between Carnot groups which commutes with dilations.

• Any sub-Riemannian manifold is a differentiable manifold, therefore
we always have the notion of the differential of a smooth map. But this
does not coincide with the notion of tangent map which on the other
hand takes place on horizontal spaces and on the other one is defined in
geometric terms.

• There can be no bi-Lipschitz map between Carnot groups which are not
isomorphic.

I wish to thank I.M. Fourtzis for typesetting the first version of this text.
His help was valuable.
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Abstract. This is a review paper whose main theme is the presentation of
simplicial methods in topological rigidity. More specifically, we present re-
sults where equivariant rigidity of certain manifolds is reduced to comparing
simplicial complexes. The actions are of certain “tori” on manifolds. The
groups are Coxeter groups, the usual torus and the Lie group (S3)n.

1 Introduction

The basic problem in geometric topology is to determine how many home-
omorphism classes are in homotopy equivalent manifolds. That problem is
also posed in the presence of a group action. The most classical conjecture is
Borel’s Conjecture.

Conjecture (Borel’s Conjecture). Let Mn and Nn be two aspherical manifolds
with isomorphic fundamental groups. Then homotopy equivalence that is a
homeomorphism outside a compact set is homotopic to a homeomorphism.

The equivariant version of conjecture is not stated quite as clearly.
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Conjecture. Let G be a compact Lie group or a discrete group. Let Mn and
Nn be two “nice” G-cocompact manifolds that are G-homotopic, then they
are G-homeomorphic.

The ambiguity is what a “nice” manifold is. For discrete groups Γ, usually,
it is assumed that the Γ-manifold Mn is a manifold of type E Γ, namely a
Γ-space where all the isotropy groups are finite and the fixed point sets are
contractible. In this paper, we will consider also certain compact Lie group
actions on non-contractible manifolds.

We express this conjecture explicitly:

Conjecture (Equivariant Borel Conjecture). If Γ is a discrete group and f :
Nn → Mn is a Γ-homotopy equivalence of spaces of type E Γ then f is Γ-
homotopic to a Γ-homeomorphism.

All the known non-equivariant rigidity conjectures were summarized in
the Farrell-Jones Isomorphism Conjecture ([10]) which gives a method of cal-
culating the obstructions to homeomorphisms from the class of virtually cyclic
subgroups of the fundamental group. It will be very interesting if we can con-
nect the equivariant rigidity conjecture with the Isomorphism Conjecture.

In this paper, we will review certain equivariant results where the groups
are either Coxeter (discrete) groups, the usual tori T n or the Lie group (S3)n.
More specifically, we look at the spheres in the associative finite dimensional
real division algebras. For the real case the torus is the group (Z/2Z)2. In
this case, equivariant rigidity holds for Coxeter groups (which are generaliza-
tions of the above groups) and Weyl groups of the finite parabolic subgroups
of Coxeter groups. All the above are discrete groups and one of the manifolds
is a natural model for a space of type E Γ. The next case is the case of the
complex numbers. In this case, the group is the torus T n and one of the mani-
folds is the rigidity conjecture is a quasitoric manifold. The third case is that
of quaternions, where the group Qn = (S3)n and one of the manifolds is the
quoric manifold. We call all the above manifolds T -manifolds.

The common aspect of the all the above is that the quotient space of the
action is a simple polyhedron or a simple manifold with corners and the ambi-
ent manifold can be recovered from the quotient and the isotropy group data.
So we start with an equivariant homotopy equivalence to a T -manifold from
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a manifold M. First, we pull-back the T -structure to M. Then the equiv-
ariant homotopy equivalence induces a simplicial homotopy equivalence to
the quotient spaces. Using induction on skeleta, we show that the simplicial
homotopy equivalence is simplicially homotopic to a simplicial homeomor-
phism, which induces an equivariant homeomorphism in the ambinet spaces.

Also, we present variants of the original method that applies to other
groups as well as to a type of stratified rigidity of certain T -manifolds.

2 Preliminaries

Frobenius Theorem is a classical theorem that describes the finite dimensional
real algebras that do not have zero divisors.

Theorem 1 (Frobenius, [14]). The finite dimensional real associative alge-
bras without zero divisors are the reals R, the complex numbers C = R2,
and the quaternions H = R4. Furthermore, there is an 8-dimensional non-
associative algebra, without zero divisors, the Cayley numbers.

The spheres in the division algebras are Lie groups. Actually, it is a classi-
cal result that they are the spheres that appear in the only sphere bundles over
spheres ([11]).

Theorem 2. The only bundles where all the spaces are spheres are:

S0 −−−−→ S1y
S1

S1 −−−−→ S3y
S2

S3 −−−−→ S7y
S4

S7 −−−−→ S15y
S8

The tori over the division algebras are (Z/2Z)n, (S1)n and (S3)n. In [8],
the authors study actions of the tori, in the first two cases, that generalize
the actions of complex tori on toric varieties. They call their generalization
quasitoric manifolds. For the quaternionic case, the proper setting is given in
[11].

We look at each case separately. We are interested in cocompact actions.
That is the reason that in the real case we will consider a generalization of the
real torus. Our main focus will be on Coxeter groups.
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Definition 1. A Coxeter group is a group with presentation

W = 〈s1,s2 . . .sn : (sis j)
mi, j = 1 mi,i = 1,mi, j ∈ {2, . . . ,∞}〉.

If S = {s1,s2, . . . ,sn} then the pair (W,S) is called a Coxeter system. Sub-
groups WT of W that are generated by subsets T ⊂ S are called parabolic
subgroups and the pair (WT ,T ) is a Coxeter system.

For a Coxeter system (W,S), an S-panel space is a pair (X ,(Xs)s∈S), where
(Xs)s∈S is a locally finite family of closed subsets of a space X . The subspaces
Xs are called panels. For each x ∈ X , set S(x) = {s ∈ S : x ∈ Xs}. For each
non-empty subset T⊆S, set

XT = {x∈X : T⊆S(x)}=
⋂
s∈T

Xs, Xσ(T ) =
⋃
s∈T

Xs.

The S-panel structure is called S-finite if S(x) is finite for each x ∈ X .
For an S-panel space X , we construct a W -space, E (W,S), the universal

S-panel space, as follows:

E (W,S) =W×X/∼, (w,x)∼ (w′,x′)⇐⇒ x = x′, w−1w′ ∈WS(x)

and W acts on the first coordinate. The isotropy groups are conjugates of the
parabolic subgroups of W . The W -action on E (W,S) is proper if and only if
the S-panel structure on X is S-finite.

Coxeter groups are generated by involutions. Geometrically, involutions
correspond to reflections on spaces.

Definition 2. A reflection on a manifold Mn is a locally linear involution r :
M→M so that the fixed point set Mr is of codimension 1 and M \Mr has two
components. A group that acts locally linearly on a manifold that is generated
by reflections is called a reflection group.

Remark 11. The following results are contained in [6], [7]. Let W be a
reflection cocompact group on a manifold M.

1o The quotient space of a reflection group action is a simple polyhedron
P which is embedded into M as a fundamental domain.



90 years School of Mathematics A.U.Th. 233

2o The reflection group is a Coxeter group. The Coxeter generators are
the reflections whose fixed point sets are submanifolds that intersect P
in codimension 1 faces. That determines also an S-panel structure on
P.

3o If S is the set of Coxeter generators then M ∼=W E (W,P).

Definition 3. For a group Γ, a Γ-complex is called of type E Γ if the isotropy
groups of the action are finite and the fixed point sets are contractible.

For Coxeter systems (W,S), spaces of type EW are constructed from the
universal S-panel space construction.

Proposition 1 ([17]). Let (W,S) be a Coxeter system with S finite and (X ,
(Xs)s∈S) an S-finite S-panel complex with Xs subcomplexes of X. If X and all
its faces are contractible then E (W,X) is a space of type EW.

Next we consider the complex case. In this case T n = T n and the mani-
folds under consideration are the quasitoric manifolds that generalize the toric
non-singular varieties ([8]). The circle S1 is viewed as the standard subgroup
of C∗, namely the multiplicative group of non-zero complex numbers. So the
torus T n is viewed as a subgroup of (C∗)n. We refer to the standard represen-
tation of T n by diagonal matrices in U(n) as the standard action of T n on Cn.
The orbit space of the action is the positive cone Rn

+ = {(x1,x2, . . . ,xn) : xi ≥
0}.

Definition 4. Let M2n be a 2n-dimensional manifold with an action of T n. Let
MT n

denote the fixed point set of M2n under the T n action. The action is called
locally standard if:

1o It is effective.

2o MT n 6= /0 i.e., there is a T n-fixed point.

3o For every x ∈M2n there is a T n invariant neighborhood U of x, a home-
omorphism f : U →W where W is an open set in Cn invariant under
the standard action of T n, and an automorphism φ : T n→ T n such that
f (ty) = φ(t) f (y) for all y ∈U.
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A 2n-dimensional manifold M2n with a locally standard action of T n is called
a locally standard torus manifold. We will consider only closed locally stan-
dard torus manifolds.

The quotient space of the standard action of the torus on Rn looks like the
positive cone Rn

+. The quotient space of a locally standard action is locally
like the positive cone. Those spaces are manifolds with corners. More pre-
cisely, a space Xn is an n-manifold with corners if it is a Hausdorff, second
countable space equipped with an atlas of open sets homeomorphic to open
subsets of Rn

+ such that the overlap maps are local homeomorphisms that pre-
serve the natural stratification of Rn

+ ([7]). For each x ∈ X and each chart σ

of x, define c(x) to be the number of coordinates of σ(x) that are 0. The num-
ber c(x) is independent of the choice of the chart σ and so c defines a map
c : X → N. For 0 ≤ k ≤ n, a connected component of c−1(k) is called a pref-
ace of codimension-k. The closure of a preface of codimension-k is called a
codimension-k face or an (n− k)-dimensional face. A manifold with corners
X is called nice if

1o For every 0≤ k ≤ n there is a codimension-k face.

2o For each codimension-k face F , there are exactly k facets F1, . . . , Fk
such that F is a connected component of F1∩·· ·∩Fk. Moreover F does
not intersect any other facet.

For M2n a closed locally standard torus manifold the quotient space X =
M2n/T n is a compact nice n-manifold with corners ([21]). In [8], they de-
fined quasitoric manifolds to be locally standard manifolds torus manifolds
where the quotient space is a simple polyhedron. The orbit map π : M2n→ X
maps points in M2n, with the same isotropy groups, which are subtori, to the
relative interior of a preface of X .

Let π : M2n→ X be the projection defined above. A codimension-1 con-
nected component of a fixed point set of a circle in T n is called a characteristic
submanifold of M2n ([4]). The images of the characteristic submanifolds are
the facets of X . For each facet Xi of X , let M2(n−1)

i = π−1(Xi) be the corre-
sponding characteristic submanifold (i = 1, . . . ,k). Let

Λ : {X1, . . . ,Xk}→ {T ′ | T ′ < T n,T ′ 1-dimensional}
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be the map that assigns to each Xi the isotropy group of the corresponding
characteristic manifold M2(n−1)

i . The main property of these data is the fol-
lowing (see [4]):

Property (*): if Xi1∩ . . .∩Xim 6= /0 then the induced map Λ(Xi1)× . . .×Λ(Xim)→
T is injective.

Let F be a k-face of X . Then F is a component of Xi1∩ . . .∩Xin−k , for some
facets Xi j of X . Let TF = TXi1

×·· ·× TXin−k
, which is an (n− k)-torus. That

construction defines a map between lattices, extending the map Λ above.

Λ : {F | F < X}→ {T ′ | T ′ < T n}, F 7→ TF .

Now, we give the inverse of the above construction ([4]). Start with a com-
pact manifold with corners X and a map Λ that satisfies Property (*) above.
Such a pair (X ,Λ) is called a characteristic pair and Λ a characteristic map.
For x ∈ X , we denote by F(x) the smallest face of X that contains x in its
relative interior. Define:

MX(Λ) = T n×X/∼, (t,x)∼ (t ′,x′)⇐⇒ x = x′ and t−1t ′ ∈ TF(x).

The space MX(Λ) is a closed manifold and the torus T n acts on it by acting
on the first coordinate. In fact, the space MX(Λ) is a locally standard torus
manifold.

Up to now, there was a clear analogy between the case of Coxeter groups.
But there is an obstruction for the standard model induced from a locally linear
action to be T n-homeomorphic to the ambient manifold. The two manifolds
M2n and MX(Λ) are T -homeomorphic, with a homeomorphism covering the
identity on X , if and only if a class e(M2n,X) ∈ Ȟ1

(X ,S(X ,Λ)), called the
Euler class, vanishes. Here the cohomology theory is Čech cohomology with
coefficients the sheaf of local sections of the quotient map q : MX(Λ)→ X .
It can be shown ([15]) that if the orbit space is contractible then the above
obstruction vanishes.

For the quaternionic case, let T n = Qn = (S3)n be the torus. We need
the analogues of the parabolic subgroups in the Coxeter case and the natural
subtori in the complex case. The setting here is in [11]. The group Q = S3
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is viewed as the subgroup of H. The endomorphisms of Q are of the form
ψw : Q→ Q, w ∈H,

ψw(s) =
{

1, if w = 0
usu−1, if w = u

A subgroup of Qn is isomorphic to Q if and only if it is of the form:

Q(u) = {(s1, . . . ,sn) ∈ Qn : si = ψui(t), t ∈ Q},

for u = (u1, . . .un) ∈Hn \{0} with ui = 0 or ui ∈Q. For u = (u1, . . .un) ∈Hn,
define its characteristic set, γ(u) = {i ∈ {1, . . . ,n} : ui 6= 0}. Then the groups
Q(u) and Q(u′) are conjugate if and only if γ(u) = γ(u′). Generalizing, a
subgroup of Qn is isomorphic to Qk (0≤ k ≤ n) if and only if it is of the form

Q(u1, . . .uk) = Q(u1) . . .Q(uk)

where ui ∈Hn are as before. A conjugacy class is classified by a set of disjoint
sets γi, i = 1, . . .k, and it is written as Qγ1,...,γk . For each conjugacy class ` =
[Qγ ], where γ stands for (γ1, . . .γk), we define the canonical subgroup ˆ̀ =
Q(u1, . . . ,uk) where each u j = (u j

1, . . . ,u
j
n), j = 1, . . . ,k, is of the form

u j
i =

{
1, if i ∈ γ j

0, otherwise

There is a natural action Qn on Hn:

Qn×Hn→Hn, ((s1, . . . ,sn),(h1, . . . ,hn)) 7→ (s1h1, . . . ,snhn)

with quotient the positive cone Rn
+, with its natural stratification. For σ ⊂

[n] = {1, . . . ,n}, a face is given as

Fσ = {(r1, . . . ,rn) ∈ Rn
+ : ri = 0 for i ∈ σ}.

The set of faces is ordered by the subface relation and thus they form a cate-
gory FACE(Rn

+). There is an equivalence of categories

FACE(Rn
+)

op→ CAT([n]), Fσ 7→ σ .
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An action of Qn on Hn induces an isotropy functor

` : CAT([n])→ CONJ(Qn)

that maps a face, which corresponds to a subset σ ⊂ [n] to the class of its
isotropy subgroup. If ` is injective then the action is called acceptable.

Definition 5. A locally linear Qn-action on M4n is called locally standard
if for every point x ∈ M there is a Qn-chart (U,φ) where φ : U → Hn is an
equivariant homeomorphism to an acceptable action on Hn.

Remark 12. In [11], it is assumed that the quotient space is a simple polyhe-
dron. In general though the quotient is just a nice manifold with corners.

Let M4n be a locally standard manifold and p : M2n→ X the quotient map,
where X is a nice manifold with corners. The set of faces of X is a partially
ordered set and thus it forms a category CAT(X). As in the standard case,
there is a functor

λ : CAT(X)→ CONJ(Qn)

that maps each face to the isotropy group that it determines. For a vertex
v ∈ X ,

v =
⋂

ai∈σv

Fai

where Fai are facets (maximal faces) and σv = {a1, . . . ,an}. Restricting CAT(X)
to v, that is restricting to subsets of σv, determines a full subcategory CAT(Xv)
which is isomorphic to CAT([n]). The functor

rv : CAT([n])→ CAT(Xv), σ 7→ {ai ∈ σv : i ∈ σ}

The functor is a characteristic functor. That means that the restriction to each
vertex v of X ,

`v = λ |v◦rv : CAT([n])→ CAT(Xv)→ CONJ(Qn)

is an acceptable isotropy functor.
The construction can be reversed as in the toric case. Given a characteris-

tic functor λ over a manifold Xn with corners define the standard model

M (λ ) = Qn×Xn/∼, (q,x)∼ (q′,x′)⇔ x = x′, q−1q′ ∈ λ̂ (τ(x)),
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where τ(x) is the face of X that contains x in its relative interior. The group
Qn acts on M (λ ) from the left with multiplication. Then M (λ ) is a quoric
manifold over X and the quotient of the Qn-action is X .

3 Rigidity Theorems

The cases that were presented in the previous section have in common that
the orbit space is a simple polyhedron or, more generally, a nice manifold
with corners and that the ambient space can be reconstructed from it and the
isotropy group data. Thus, in general, let f : N →M a T n-homotopy equiv-
alence, with T n = W,T n, or Qn, where W is a Coxeter group. Again, in
general. taking quotient spaces, we have a diagram:

N
f−−−−→ M

ρ

y yπ

Y
φ−−−−→ X

(∗∗)

We assume that X and all its faces are contractible.

Definition 6. The action of T n on a manifold Mn is called regular if

1o If T n =W, a Coxeter group the action is by reflections.

2o If T n = T n or Qn and the action is locally standard.

Let M be a regular T n-manifold. Thus it can be represented as the stan-
dard model in all cases. In the case of the Coxeter group with Coxeter gen-
erating set S, is the universal space comes from the natural S-panel structure
of X and it is E (W,X). In the case of the torus T n, the space comes from a
characteristic function Λ from the faces of the faces of X to the set of subtori
of T n and it is the space MX(Λ). In the case of quoric manifolds, for T n = Qn

it is the space M (λ ) for a characteristic functor Λ, from the subsets of [n] to
the set of conjugacy classes of subgroups of Qn isomorphic to Qk, 0≤ k ≤ n.

Let N be a T n-locally linear manifold. In the cases that T n = T n or Qn,
we assume further that the action is effective. Let f : N→M a T n-homotopy
equivalence. There is a standard procedure from which we can deduce the
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equivariant rigidity from the simplicial rigidity of the quotient spaces. The
procedure follows the following steps in all cases:

1o We show that Nn is a regular manifold.

(a) For T n =W , we show that W acts by reflections on N ([5], [17]).
Then the quotient Y in (**) is naturally an S-panel simplicial com-
plex and the map φ is a simplicial homotopy equivalence.

(b) For the case T n = T n, we show that the action is locally standard
([15]). The proof uses the fact that the torus is an abelian group
and that every irreducible representation is 1-dimensional. Thus
the action of the torus around a fixed point is the standard one.
Every other point, is connected to the fixed point with a path. We
see then that around the new point the action is also standard.

(c) For T n = Qn, the situation is more complicated but similar to the
one of the torus. The reason is that the group Qn is no longer
abelian and the irreducible representations are more complicated
but well understood (see for example [1]). The method is similar
to the one in the complex case. The details will appear in [9].

2o Since N is a regular manifold, we can form the universal space in all
three cases. In the Coxeter case it will be E (W,S), and in the other two
cases will be the universal space MY (Λ

′) and MY (λ )
′ for characteristic

functions

Λ
′ : {Y1, . . . ,Yk}→ {T ′ | T ′ < T n,T ′ 1-dimensional}

for T n and
λ
′ : CAT(Y )→ CONJ(Qn)

for the case of Qn. In all three cases, we denote by U (N,Y ) the univer-
sal space that is induced by the action.

3o The universal space is equivariantly homeomorphic to N. In the case of
Coxeter group that is standard ([6]). In the case of the torus, it is proved
in [15], using the obstruction theory of [21]. In the case of Qn, the
result is outlined in [11]. The complete proof will be presented in [9].
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It should be noticed that the proof is direct and a general obstruction
theory could be found in this case.

4o The homotopy equivalence φ : Y → X preserves faces and it is homo-
topic, with a homotopy that preserves faces, to a face-preserving home-
omorphism. This is a classical result and the proof is the same in all
cases. The proof is done by induction on faces. To extend the homeo-
morphism from the boundary of an k-face to the whole face σ , we notice
that that is a relative surgery problem. The face is homeomorphic to a
contractible manifold with boundary. Its boundary ∂σ is a homology
sphere. That induces a surgery problem on σ/∂σ ∼= Sk. The Poincaré
Conjecture then shows that the homotopy equivalence is homotopic to
a homeomorphism. Let Φ : φ ' χ be the face-preserving homotopy of
φ to a face-preserving homeomorphism χ .

5o The construction of the universal space is natural. Thus the above
data induce a T n-homotopy U (Φ) : U (φ) 'T n U (χ) on the univer-
sal spaces, where U (χ) is a T n-homeomorphism. Since the univer-
sal spaces are T n-homeomorphic to the original manifolds, f is T n-
homotopic to a T n-homeomorphism.

Thus we outlined the proof of the following.

Theorem (Rigidity Theorem, [17], [15], [9]). Let M be a regular T n-manifold.
Let f : N→M be a T n-homotopy equivalence between manifolds of the same
dimension, where N is a locally linear T n-manifold, with an effective action.
Then f is T n-homotopic to a T n-homeomorphism.

4 Variations of the Rigidity Theorems

We present two variations of topological rigidity.

4.1 Topological rigidity of the Weyl groups of finite parabolic sub-
groups of a Coxeter group

Let (W,S) be a Coxeter group and (WT ,T ) a parabolic finite subgroup. Then
the Weyl group Γ = NW (WT )/WT has the structure Vo∆ where (V,R) is a
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Coxeter system and ∆ acts on V through automorphisms of its Coxeter graph
C(V,R). We express that with an exact sequence:

1→ ∆0→ ∆
α−→ Aut(C(V,R)).

We assume that

1o There is a cocompact manifold Mn of type E Γ on which V acts by
reflections. Let X = M/V be the panel space determined by the action

2o The groups ∆H = α−1(H)m H < Aut(C(V,R)) satisfy the Equivariant
Borel Conjecture.

The assumptions imply that ([16])

1o The group Γ is a virtually Poincaré Duality group and that implies that
both V and ∆ are too.

2o The groups ∆H satisfy the relative equivariant Borel Conjecture: If

f : (Nn,∂Nn)→ (Mn,∂Mn)

is a Γ-homotopy equivalent of spaces of type E Γ, which is a Γ-homeomo-
rphism on the boundaries, then f is Γ-homotopic to a Γ-homeomorphism.

3o The action of ∆ on V induces a ∆-action on any R-panel space by per-
muting the faces.

Now let f : Nn → Mn be a Γ-homotopy equivalence. We follow a similar
scheme as in the previous section ([16]):

1o The group V acts by reflections on N. Let Y = N/V be the panel space
and N is a universal space.

2o The map f induces a ∆-homotopy equivalence φ : Y → X . We notice
that the ∆-action is by permuting the faces.

3o Using the assumption on the equivariant rigidity of the subgroups ∆H ,
we show that φ is ∆-homotopic to a ∆-homeomorhism. That replaces
the use of the Poincaré Conjecture in the previous section.
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4o Taking the lifts universal spaces as in the previous section, we get a
Γ-homotopy to a Γ-homeomorphism.

Thus we outlined the proof of the following rigidity theorem.

Theorem ([16]). With the above notation and assumptions on the group Γ,
any Γ-homotopy equivalence f : Nn→Mn of Γ-manifolds of type E Γ, possibly
with boundary, so that f restricts to a Γ-homeomorphism on the boundaries,
is Γ-homotopic to a Γ-homeomorphism.

4.2 Stratified Rigidity of quasitoric manifolds

Let M be a quasitoric manifold and p : M→ X be the projection map to the
quotient space that is a nice manifold with corners. Then the projection maps
is a stratified system of fibrations ([18]). Actually, it is a stratified system of
bundles. The natural stratification of X , as a manifold with corners, induces a
stratification of M. The strata of M are products of tori times open cells.

For the question of the stratified rigidity, we start with a homotopically
stratified space N ([19]) and a stratified homotopy equivalence f : N → M.
We assume that f is a homeomorphsim in all strata of dimension ≤ 4.

1o The strata of N have teardrop neighbourhoods ([12]). Then the mapping
cylinder obstructions for the strata of N vanish because the obstructions
lie in the K0-groups of the torus ([19]). Thus the strata of N have map-
ping cylinder neighborhoods.

2o We proceed by induction. So we assume that f is a stratified homeo-
morphism is all strata of dimension ≤ k. Extend the homeomorphism
to the mapping cylinder neighbourhoods of the strata. This construction
uses the fact that, over k-strata, the fibers are tori. The construction here
uses controlled rigidity.

3o The complement of the open mapping cylinder neighbourhood is of the
form T nk×∆k+1, which is rigid.

Thus the result in this case is:
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Theorem ([13]). Let M be a quasitoric manifold with its natural stratification.
If N is a manifold stratified space and f : X → M is a stratified homotopy
equivalence that restricts to a homeomorphism on a closed union N′ of strata
of N that includes all strata of dimension ≤ 4, then f is stratified homotopic
to a homeomorphism relN′.
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Reduction techniques
for the finitistic dimension
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Abstract. This note is an extended abstract of my talk given in the conference:
“90 years of Mathematics in the Aristotle University of Thessaloniki”, December
19–20, 2018. It is based on [8] which is joint work with Edward Green and
Øyvind Solberg.

1 Motivation and Preliminaries

One of the longstanding open problems in representation theory of finite di-
mensional algebras is the Finitistic Dimension Conjecture. Let Λ be a finite
dimensional algebra over a field. The finitistic dimension findimΛ of Λ is
defined as the supremum of the projective dimension of all finitely generated
right modules of finite projective dimension. The finitistic dimension conjec-
ture asserts that the latter supremum is finite, i.e. findimΛ<∞. The aim of this
short note is to present a new reduction technique for detecting the finiteness
of the finitistic dimension. This is based on the paper [8].

Before we continue with some motivation, let us fix some notation:
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• k will always be an algebraically closed field,

• by an algebra, we always mean a finite dimensional associative unital
algebra,

• all modules are finitely generated, and

• modΛ denotes the category of left Λ-modules.

The general idea for introducing homological dimensions in representa-
tion theory is to find a measure of how far is modΛ from being semisimple.
One way to measure the complexity of modΛ is by the global dimension of Λ

defined by gl.dimΛ = sup{pdΛX | X ∈modΛ}. For example, let us consider
the algebra Λ = k[x]/(x2). Then since the simple Λ-module k has an infinite
projective resolution

· · · // Λ
·x // Λ // · · ·Λ //·x // Λ //

Λk // 0

it follows that gl.dimΛ = ∞.
A far more accurate measure of the complexity of mod-Λ is given by the

finitistic dimension. Here is the definition.

Definition 1. Let Λ be an algebra. The finitistic dimension of Λ is defined as

fin.dimΛ = sup{pdΛX | X ∈modΛ and pdΛX < ∞}

Let us return to our motivating example Λ = k[x]/(x2). It is easy to ob-
serve that fin.dimΛ = 0 (either use the fact that Λ is a local algebra or that Λ

is a selfinjective algebra). The meaning of fin.dimΛ = 0 is that the only mod-
ules of finite projective dimension are the projective modules. The value of
the finitistic dimension in this particular example fits perfectly with the com-
plexity of modΛ since there are only two indecomposable Λ-modules up to
isomorphism (i.e. the algebra k[x]/(x2) is of finite representation type). This
example explains the philosophy of measuring the complexity of modΛ via
the finitistic dimension.

The finitistic dimension conjecture has a long and interesting history. Al-
ready in the beginning of the sixties, it became apparent that the finitistic
dimension provides a measure of the complexity of the module category. In



90 years School of Mathematics A.U.Th. 247

the commutative noetherian case, it has been proved basically by Auslander
and Buchbaum [2] that the finitistic dimension equals the depth of the ring.
It was Bass that emphasized the role of this homological dimension in the
non-commutative setup. For more on the history of the finitistic dimension
conjecture we refer to Zimmermann-Huisgen’s paper [15].

The finitistic dimension conjecture is known to be related with other im-
portant problems concerning the homological behaviour and the structure the-
ory of the module category of a finite dimensional algebra. In the hierarchy of
the homological conjectures in representation theory, the finitistic dimension
conjecture plays a central role. More precisely, we have the following diagram
which shows that “all” other homological conjectures for finite dimensional
algebras are implied by the finitistic dimension conjecture (FDC) :

(FDC) +3

��

(WTC) +3 (GSC)

(NuC) +3 (SNC) +3 (ARC) +3 (NC)

We write (SNC) for the strong Nakayama conjecture, (NC) for the Nakayama
conjecture, (ARC) for the Auslander-Reiten conjecture, (WTC) for the Waka-
matsu tilting conjecture, (NuC) for the Nunke condition and (GSC) for the
Gorenstein symmetry conjecture. The above diagram is not complete, we
refer to [3, 9, 10, 13] and references therein for more information on the hier-
archy of homological conjectures.

Let us now recall some known reduction techniques for the finitistic di-
mension.

1o Let Λ =
(

R 0
M S

)
be a triangular matrix algebra. Then:

fin.dimΛ≤ fin.dimR+fin.dimS+1

(Fossum–Griffith–Reiten [5]).

2o If a finite dimensional algebra Λ occurs in a recollement of bounded
derived categories

Db(mod-R) // Db(mod-Λ) //
vv

hh
Db(mod-S)

vv

hh
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then:

fin.dimΛ < ∞ ⇐⇒ fin.dimR < ∞ and fin.dimS < ∞

(Happel [10]).

3o Consider pairs of algebras (B,A) where A is an extension of B and the
Jacobson radical radB is a left ideal in A. Then:

fin.dimA < ∞ =⇒ fin.dimB < ∞

(Wang-Xi [11], see also [12, 13, 14]).

Aim. Develop new reduction techniques for testing the finiteness of the
finitistic dimension of an algebra.

Our strategy towards the above, is based on the following ideas (the first
one is classical in representation theory, while the second one is our contribu-
tion done in [8]).

• View an algebra as a quotient of a path algebra over a quiver.

• Introduce two new operations on the quiver: arrow removal and vertex
removal.

The main aim of this note is to discuss how vertices and arrows contribute
to the finitistic dimension. We focus only on vertices and we present our
“vertex removal reduction techniques” based on [8]. For the “arrow removal
reduction techniques” we refer to [8].

2 The reduction technique

2.1 Quivers and Representations

We start by discussing briefly the notion of quivers and their representations.
For an introduction to the subject we refer to the book [1].

Definition 2. A quiver Q = (Q0,Q1) is a finite oriented graph where Q0 =
{vertices}= {1,2, . . . ,n} and Q1 = {arrows}.
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Example 1. 1o Q : 1 α // 2 , Q0 = {1,2}, Q1 = {α}.

2o Q : 1 αee , Q0 = {1}, Q1 = {α}.

3o Q : 1
β

//
α // 2 , Q0 = {1,2}, Q1 = {α,β}.

Definition 3. Let Q be a quiver. The path algebra kQ is the vector space with
all the paths in Q as basis (including a trivial path ei for each vertex i ∈ Q0).
The multiplication is given as follows:

p ·q =

{
pq, i f e(q)=s(p)
0, otherwise

for all non-trivial paths, and

p · ei =

{
p, i f s(p)=i
0, otherwise

ei · p =

{
p, i f e(p)=i
0, otherwise

Here are some standard examples.

Example 2. 1o Q : 1 α // 2 . Then kQ∼=
(

k 0
k k

)
.

2o Q : 1 αee . Then kQ∼= k[x].

3o Q : 1
β

//
α // 2 . Then kQ∼=

( k 0
k2 k

)
.

The following fundamental result due to Gabriel shows that modules over
a finite dimensional algebra are representations over the path algebra of a
quiver.

Theorem 1. ([6, 7]) Let Λ be a finite dimensional algebra over an algebraically
closed field k. Then there is a quiver (Q, I) such that

mod-Λ' mod-kQ/I.

For more details on the above result we refer to [1].



250 Ch. Psaroudakis, Reduction techniques for the finitistic dimension

2.2 Vertex Removal and Recollements

Let Λ be an algebra (always of the form kQ/I where I is an admissible ideal
of kQ). We have the following dictionary between algebras and idempotent
elements:

• A vertex v in Q corresponds to an idempotent element e = e2 of Λ.

• The quiver Q/{v}, i.e. removing a vertex v in the quiver Q, is the quiver
of the algebra Λ/ΛeΛ where e is the idempotent corresponding to the
vertex v.

• The pair (Λ,e) gives a recollement of module categories:

mod-Λ/ΛeΛ
inc // mod-Λ

e(−) //

Λ/ΛeΛ⊗Λ−

ww

HomΛ(Λ/ΛeΛ,−)

gg
mod-eΛe

l=Λe⊗eΛe−

xx

HomeΛe(eΛ,−)

ee

in the sense of Beilinson–Bernstein–Deligne [4].

Our first main result is the following.

Theorem 2. ([8, Theorem 5.8]) Let Λ be an algebra. Then

fin.dimΛ≤ findimeΛe+ sup
{

idΛS | S simple Λ/ΛeΛ−module
}

The key idea of the above result is that assuming

sup
{

idΛS | S simple Λ/ΛeΛ−module
}
= t < ∞

implies that any Λ-module X has a projective resolution:

· · · → l(Q1)→ l(Q0)→ Pt → ··· → P0→ X → 0

with Qi projective eΛe-modules.
Let us now briefly explain how to apply this result:

1o Compute the simples of finite injective dimension.
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2o Take the sum of the idempotents elements corresponding to these ver-
tices. Say that we have one such vertex v1, write e1 for the correspond-
ing idempotent element and set e := 1− e1.

3o We form the following recollement of module categories and apply The-
orem 2:

mod-Λ/ΛeΛ
inc // mod-Λ

e(−) //

Λ/ΛeΛ⊗Λ−

ww

HomΛ(Λ/ΛeΛ,−)

gg
mod-eΛe

l=Λe⊗eΛe−

xx

HomeΛe(eΛ,−)

ee

So the slogan of Theorem 2 is

remove simples of finite injective dimension.

Our second main result with respect to removing vertices is the following:

Theorem 3. ([8, Theorem 5.5]) Let Λ be an algebra with an idempotent ele-
ment e. Assume that pdΛ(1−e)Λ/(1−e)radΛ≤ 1. Then fin.dimΛ < ∞ if and
only if fin.dimeΛe < ∞

The slogan of the above Theorem is

remove simples of projective dimension at most one.

We don’t know if an analogous reduction theorem holds for simples of
finite projective dimension, see the questions at the end of this note. We ap-
ply in an example below the “vertex removal reduction techniques”, that is,
Theorem 2 and Theorem 3.

Example 3. Define Λ by the following quiver and relations over a field k.

Λ = k



3
δ

��
1 2

ϕoo

ψ
oo 5 αee

γ

^^

η
��

4
ξ

^^


/〈α2,αη ,αγ,γδ −ηξ 〉
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The injective and the projective dimensions of the simple Λ-modules are given
as follows.

S1 S2 S3 S4 S5

pd 0 1 1 1 ∞

id 1 ∞ ∞ ∞ ∞

Using that the injective dimension of the simple module S1 is 1, we can
remove the vertex 1 and obtain the algebra Λ1 = (e2 + e3 + e4 + e5)Λ(e2 +
e3 + e4 + e5), which is given by

Λ1 = k



3
δ

��
2 5 αee

γ

^^

η
��

4
ξ

^^


/〈α2,αη ,αγ,γδ −ηξ 〉

Here we are using Theorem2. To continue, note that all simple Λ1-modules
have infinite injective dimension. However, the simple Λ1-modules {S3,S2,S4}
have projective dimension at most 1. Thus, from Theorem3 we can reduce to
e5Λ1e5 which is a local algebra. We infer that fin.dimΛ≤ 3.

Question 3. We close this note with the following list of questions.

1o It is well known that over a right and left Noetherian ring, the left and
right global dimensions are the same. What about the analogous re-
sult for the finitistic dimension, and more general how we can compare
fin.dimΛ with fin.dimΛop. An affirmative answer to this question would
contribute to the reduction procedure by being able to remove simples
of finite projective dimension.

2o Theorem 2 suggests an interesting connection of injΛ with the finitistic
dimension. What is this mysterious connection, and how it is related
with the above question.
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3o Removing all the vertices and arrows that they don’t play any role for
the finitistic dimension gives rise to a new class of algebras that we
call ‘Reduced algebras’. It would be interesting to get new examples of
reduced algebras, characterize such a class homologically and compare
it with other classes of algebras.

4o It is natural to consider if those reduction techniques can be applied to
other homological conjectures as presented in the Introduction. This
could also help in our understanding on the class of reduced algebras.

5o Finally we can ask about the “converse process”. How we can glue
algebras of finite finitistic dimension to obtain a new (bigger) algebra
of finite finitistic dimension. Here we would like to consider a different
process than the triangular gluing one (triangular matrix algebras).

Bibliography

[1] I. ASSEM, D. SIMSON AND A. SKOWROŃSKI, Elements of the rep-
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Abstract. One of the numerous or even countless applications of Mathemat-
ics in real life is that of composing and executing social research and using
mathematical tools to measure vague, fuzzy or abstract concepts and ideas.
The so called Quantitative Research incorporates systematic empirical inves-
tigations using scientific methods to answer specific questions and it refers
to the systematic empirical investigation of social phenomena, using statis-
tical, mathematical or computational techniques. Appropriate mathematical
measurement of research variables is central to Quantitative Research, since
it provides the necessary linkage between empirical observation and mathe-
matical expression of quantitative relationships. Quantitative data, usually
but not always numerical, requires the use of various statistical procedures of
data analysis and interpretations. The difficulties and limitations of such an
endeavour are presented in the present paper and specific examples are pro-
vided from the field of labour market with emphasis to school-to-work transi-
tions and early job insecurity.
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1 Theoretical approaches to measurement in social sci-
ences

When dealing with research in the real world, it is inevitable not to go into
some kind of theoretical discussion about what does scientific way of thinking
mean in this field and whether one should have such a way of thinking, when
conducting research in this area. The question is therefore, whether a specific
set of procedures exists, such that, if followed, the results and outcomes are
guaranteed to be scientific. In general, a great deal of effort has been made
in order to find the foundation of what does scientific method mean in social
research. It is, however, accepted that engaging with any kind of behaviour
involving individuals is so complex a task that, for a researcher to become
effective and ethical, he/she must be aware of what exactly he/she should do.
There are well-founded principles and procedures in place, in order to con-
duct a high-quality study, and thus it is rather important to have what is called
a "scientific attitude". By scientific attitude we mean that when conducting so-
cial research one must be systematic, skeptical and ethical. Systematic refers
to the fact that one has to be clear about the nature of the observations made,
the circumstances in which they are made and the role one plays while making
them. Skeptical means that we must submit our ideas to possible controversies
and simultaneously submit our observations and conclusions to constant con-
sideration. Ethical means that we adhere to a code of conduct and certainly
all ethical rules and regulations of research.

The most well-established scientific view derives directly from a philo-
sophical approach known as positivism. One of the basic assumptions of pos-
itivism is that science is based mainly on quantitative data, which arise from
the use of strict rules and procedures and differ fundamentally from common
sense. It is possible to transfer the assumptions and methods of natural sci-
ences to social sciences. Moreover, science, including social, has a central
element of interpretation. Positives therefore seek the existence of a constant
relation between events (or variables). However, when people are the focus
of the study, and especially when it takes place in a social context in the real
world, "fixed relations" in the strict sense of the term are rare or questionable.
In the opposite direction is relativism which in short argues that there is no
objective reality, whereas, on the contrary, post-positivists -the evolution of
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the positivists- believe that there is only one reality, but they consider that it
can be known only partially, based on probabilities, due to the researcher’s
limitations. A similar approach is critical realism and last but not least is
constructivism, one of the many names used to mark the current state of qual-
itative research.

2 Investigating the real world

According to Robson [10] by investigating the real world we mean every re-
search for and with people outside the safe boundaries of a laboratory. It
is also believed that there is an absolute need to investigate the real world
through the eyes of a positive scientist. The need arises from the realisa-
tion that in social sciences there was no equivalent to the well-developed and
well-accepted measurement in natural sciences. It is a fact that any attempt
to record a social phenomenon or problem is linked to vague concepts that
need to be measured. The main question that concerns the scientists in this
field is whether it is possible to transfer the assumptions and methods from
the natural sciences to social sciences.

It is generally accepted that in this field few areas of social research are
used more widely and are more valued by society than sample surveys. A
sample survey is what is nowadays called a pre-determined research project.
The presumption of their high quality is that a very substantial part of what
researchers are going to do and how, is predetermined before proceeding to
the main part of the research study. When investigating the real world, sample
surveys require a well-developed conceptual framework or theory to establish
what we are looking for, and extensive pilot research is needed to determine
what is feasible. Therefore, as a whole, a real-world survey must follow stan-
dard procedures and processes and is conducted in a systematic manner and
according to certain principles. Most social indicators used by social scien-
tists are essentially mathematical indicators used to describe the conditions
prevailing in society, which are derived from sample surveys, most of which
are centralised for Europe by EUROSTAT and implemented by National Sta-
tistical Authorities, which in the case of Greece is the Hellenic Statistical Au-
thority (ELSTAT). It is absolutely necessary that there can be a quantitative
description of the current situation in all areas where social planning can be
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applied. Social planning is a process that aims in a rational way to resolve
specific issues or problems and achieve effectively clearly-defined goals. So-
cial planning uses social indicators to analyse and record in detail the situation
associated with the problem in numerous fields such as:

• Social change

• Social inequalities and social inclusion

• Unemployment and labour market insecurity

• Poverty and social exclusion

• Integration policies

• Gender equality

• Community building

• City development

• Organisation of social services, etc.

Social Planning is the foundation upon which policies are based and actions
are undertaken. Each member State uses Social Planning to allocate and make
optimal use of public social spending. Figure 1 presents the way social re-
search and social indicators serve policies’ implementation.

Figure 1: State, Social Planning, Social Research and Social Indicators Rela-
tion
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Some well-established social indicators per field of social planning implemen-
tation is applied are the following:

• Field: Education

– Educational level of young people, women, men, total population,

– Percentage of people who do not speak the country’s of residence
language,

– Percentage of illiterate individuals, etc.

• Field: Labour market and employment

– Unemployment rate, total, women, men, youth,

– Percentage of long-term unemployment, total, women, men, youth,

– Employment rate, total, women, men, youth,

– Severe accidents at work, total, men, women,

– Percentage of full-time / part-time workers, type of contract, etc.

• Field: Poverty and Social Inequality

– Percentage of individuals below the poverty line,

– Percentage of individuals at risk of poverty before social benefits,
total, men, women,

– Percentage of children living in households that are below the
poverty line,

– Percentage of elderly individuals (65+) below the poverty line,

– Age expenditure as a percentage of total social benefits,

– People aged 18-59 living in jobless households, etc.

• Field: Housing and Residence

– Deprivation index,

– Crime index,

– Percentage of homeless individuals, etc.
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• Field: Child Welfare

– Birth rate of teenage mothers,

– Percentage of infant mortality

– Percentage of single parent families

– Number of arrests in children and adolescents (17-), etc.

In the following section some applications to the field of Labour market
and Employment are provided.

3 Labour market applications

Significant information concerning the labour market conditions and the re-
spective indicators comes from the European Union’s Labour force Survey
(EU-LFS). The EU-LFS is a European sample survey which is being con-
ducted since 1998 on an annual basis. It provides detailed information on
labour market participation and working conditions and it enables multivariate
analysis by numerous socio-demographic characteristics, while common prin-
ciples and guidelines are used in all countries to ensure cross-country compa-
rability. The data gathered are necessary both for policy-making in various
sectors and for scientific use (research on labour market conditions, on un-
employment duration, etc.). In the EU-LFS survey individuals are asked to
fill in their ’current labour market status at the time of the survey’ (respective
variable is MAINSTAT) and their ’labour market status one year before the
survey’ (respective variable is WSTAT1Y). These two variables were used in
the studies [5], [6], [7], [8], [13], [14], [15], [18], [19] in order to estimate
the transition probabilities between labour market states. MAINSTAT was in-
troduced in the EU-LFS survey to give the individual’s own view of his/her
main labour status. The limitation here is that MAINSTAT and WSTAT1Y are
optional variables and it is up to the National Statistical Authorities of each
Member State to include them in the main questionnaire; therefore, for some
participating countries these variables are not provided.

In the EU-LFS survey the categories amongst which the respondent can
choose when asked his/her main status at the time of the survey and main
status a year before the survey are the following:
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1o Carries out a job or profession, including unpaid work for a family busi-
ness or holding, including an apprenticeship or paid traineeship, etc.

2o Unemployed.

3o Pupil, student, further training, unpaid work experience.

4o In retirement or early retirement or has given up business.

5o Permanently disabled.

6o In compulsory military service.

7o Fulfilling domestic tasks.

8o Other inactive person.

It is important to note here that Eurostat uses the International Labour
Organisations (ILO)’s definitions of employment and unemployment. Figure
2 depicts the movements between the labour market states as presented in the
EU-LFS survey.

Figure 2: Movements between labour market states
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If combined, these categories reflect the following states (Figure 3):

1o Employment (corresponding to the first category)

2o Unemployment (corresponding to the second category),

3o Education or training (corresponding to the third category), and

4o Inactivity (corresponding to the 5th, 6th, 7th and 8th category).

Figure 3: Grouping labour market states

According to the flows estimated with raw data drawn from the EU-LFS data
bases, the respective transition probabilities are measured (Figure 4).
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Figure 4: Transition probabilities between labour market states

Figure 5 presents the evolution of school-to-work transition probabilities dur-
ing the years of the crisis using non homogeneous Markov systems theory
([1], [24], [9], [12], [21], [22], [23], [25], [26], among others) and raw data
from the EU-LFS survey.

Figure 5: School-to-work transition probabilities, EU-LFS, 2007-2015

Each line corresponds to a different country and it is apparent that there is a
significant variance between the transition to work probabilities among mem-
ber states. Irrespective of which line belongs to which country we can clearly
see that in 2007 in all countries the school-to work transition probabilities
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varied between 0.36 and 0.76. In 2015 the respective probabilities took values
between 0.21 and 0.83, proving that the crisis has brought divergence in the
specific matter.

Figure 6 looks closer at the evolution of school-to-work transition prob-
abilities in some exemplar countries. We can clearly see that in Switzerland
these probabilities were not affected at all or they were affected in a very
small extend. But in countries like Greece and more even in Spain the im-
pact was tremendous. In 2007, 64% of young individuals that left education
were able to find a job, while in 2015 the percentage dropped to 25% and
in Greece the respective percentage was equal to 21% in 2015. This infor-
mation can be combined with data coming from the EU Survey on Income
and Living Conditions (EU-SILC) to conclude that it is actually 16% going
to part-time employment and only 5% to full time employment. Therefore,
when school-to-work transition is concerned it is possible that the European
Union’s nascent recovery from the crisis was apparently uneven.

Figure 6: School-to-work transition probabilities, EU-LFS, Bulgaria, Czech
Republic, Greece, Norway, Poland, Switzerland, 2007-2015

The evolution of the mean school-to-work transition probabilities for Eu-
ropean countries is exhibited in Figure 7. It is apparent that the mean school-
to-work transition probabilities dropped by approximately 10% points during
the years of the crisis.
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Figure 7: Movements between labour market states

Figure 8 depicts the evolution of a proposed positive labour market mo-
bility index, introduced in [17] and [16]. It is clear that the evolution of the
index follows the evolution of the school-to-work transition probabilities.

Figure 8: The evolution of the positive labour market mobility index

When it comes to measuring early job insecurity and labour market ex-
clusion, it is well accepted that it is far from being a straightforward proce-
dure. The existing studies are using different methodologies usually employ-
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ing a wide variety of indicators and models; descriptive statistics and indica-
tors drawn from data sets to present a general image and explain differences
among countries, school-to-work transitions ([3]), event history analysis, sur-
vival functions ([2]; [11]). There is a discussion in the literature concerning
its definition through its characteristics. In this regard, job insecurity is ap-
proached as a subjective experience or/and as an objective phenomenon. Sub-
jective perceptions of job insecurity can bear two components: a cognitive and
an affective one. The cognitive component refers to the individual’s estimate
of the probability that one will lose their job in the near future, whereas the
affective component refers to the fear, worry or anxiety of losing one’s job
[4]. Apparently, one can find different kind of indicators linked with job in-
security as an objective phenomenon, for example, the employment status (if
the job is temporary or precarious). Different theories are used to account
for the lower wages and the higher unemployment rates of young people;
human capital (’weak’ resources, i.e. education, skills, family), labour mo-
bility (flexibility, unstable conditions), job search (lack of desirable oppor-
tunities), job matching and turnover (skills-job mismatch), job competition
(leading to over-education and over-qualification), labour market segmenta-
tion (marginalisation and exclusion of certain groups from the primary sector)
[4]. In the analysis that follows eighteen different indicators were estimated
with the use of the EU-LFS survey and they were combined into a single com-
posite index of early job insecurity ([15]). Figure 9 presents the results of this
analysis, i.e. the values of the composite index of early job insecurity for the
year 2015. The first domain of early job insecurity corresponds to the Labour
market outcomes domain, the second to the Quality of Jobs domain and the
third to Transitions domain. It is clear that Greece was in the worse position
when early job insecurity is concerned for the year 2015, while Switzerland
was the country exhibiting the lowest degree of early job insecurity. It is also
noticeable from this analysis which is the domain that plays the most impor-
tant role, meaning the domain that contributes the most to the degree of early
job insecurity, in each country that year. In Greece it is clear that the Labour
market outcomes domain (youth unemployment, long term-unemployment,
youth participation rate, etc.) is the domain that contributes the most to the
early job insecurity degrees exhibited in the country that year.
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Figure 9: Early Job Insecurity in Europe and its domains

A map of early job insecurity for young individuals aged 15-29 can be
found in Figure 10.

Figure 10: Early Job Insecurity Map, 2015
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Abstract. Computing the complexity of Markov bases is an extremely chal-
lenging problem; no formula is known in general and there are very few
classes of toric ideals for which the Markov complexity has been computed. A
monomial curve C in A3 has Markov complexity m(C) two or three. Two if the
monomial curve is complete intersection and three otherwise. For monomial
curves in An, where n ≥ 4, there is no d ∈ N such that m(C) ≤ d. The same
result is true even if we restrict to complete intersections.

1 Toric bases

The material of this talk is based on the articles [4] by Hara Charalambous,
Marius Vladoiu and myself and [9] by Dimitra Kosta and myself. For more
details on this topic the reader should look at those papers and the references
therein.

Let k be a field, n,m∈N, A = {a1, . . . ,an}⊂Nm and A∈ (M )m×n(N) be
the matrix whose columns are the vectors of A . We let L (A ) := KerZZ(A)
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be the corresponding sublattice of Zn and denote by IA the corresponding toric
ideal of A in k[x1, . . . ,xn]. We recall that IA is generated by all binomials of
the form xu− xw where u−w ∈L (A ).

A Markov basis of A is a finite subset (M ) of L (A ) such that whenever
w,u ∈ Nn and w−u ∈L (A ) (i.e. Aw = Au), there exists a subset {vi : i =
1, . . . ,s} of (M ) that connects w to u. This means that (w−∑

p
i=1vi) ∈ Nn for

all 1 ≤ p ≤ s and w−u = ∑
s
i=1 vi. A Markov basis (M ) of A is minimal if

no subset of (M ) is a Markov basis of A . For a vector u ∈L (A ) we let u+,
u− be the unique vectors in Nn such that u = u+−u−. If (M ) is a minimal
Markov basis of A then a classical result of Diaconis and Sturmfels states that
the set {xu+− xu− : u ∈ (M )} is a minimal generating set of IA , see [5, The-
orem 3.1]. The universal Markov basis of A , which we denote by (M )(A ),
is the union of all minimal Markov bases of A , where we identify elements
that differ by a sign, see [8, Definition 3.1]. The intersection of all minimal
Markov bases of A via the same identification, is called the indispensable
subset of the universal Markov basis (M )(A ) and is denoted by (S )(A ).
The Graver basis of A , G (A ), is the subset of L (A ) whose elements have
no proper conformal decomposition, i.e. u ∈L (A ) is in G (A ) if there is no
other v ∈L (A ) such that v+ ≤ u+ and v− ≤ u−, see [11, Section 4]. The
Graver basis of A is always a finite set and contains the universal Markov
basis of A , see [11, Section 7]. Thus the following inclusions hold:

(S )(A )⊆ (M )(A )⊆ G (A ).

Next we give the algebraic characterization of the vectors in (M )(A )
which have proper conformal, proper semiconformal and proper strongly semi-
conformal decomposition. Schematically the following implications hold:

proper conformal ⇒ proper strongly semiconformal

⇒ proper semiconformal

Let u, w1,w2 ∈L (A ) be such that u = w1 +w2. We say that the above
sum is a conformal decomposition of u and write u = w1 +c w2 if u+ =
w+

1 +w+
2 and u− = w−1 +w−2 . If both w1,w2 are nonzero, we call such a

decomposition proper.
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Proposition 1. The Graver basis G (A ) of A consists of all nonzero vectors
in L (A ) with no proper conformal decomposition.

The notion of a semiconformal decomposition was introduced in [8, Def-
inition 3.9]. Let u,v,w ∈ L (A ). We say that u = v+sc w is a semicon-
formal decomposition of u if u = v+w and v(i) > 0 implies that w(i) ≥ 0
and w(i) < 0 implies that v(i) ≤ 0 for 1 ≤ i ≤ n. Here v(i) denotes the ith

coordinate of the vector v. We call the decomposition proper if both v,w
are nonzero. It is easy to see that u = v+sc w if and only if u+ ≥ v+ and
u− ≥ w−. We remark that 0 cannot be written as the semiconformal sum of
two nonzero vectors since L (A )∩Nn = {0}. When writing a semiconformal
decomposition of u it is necessary to specify the order of the vectors added. A
semiconformal decomposition of u for which the order of the vectors can be
reversed is a conformal decomposition, that is

if u = v+sc w and u = w+sc v then u = v+c w.

We note that a semiconformal decomposition of u gives rise to a semiconfor-
mal decomposition of −u and vice versa, by simply reversing the order of the
summands:

u = v+sc w⇔−u = (−w)+sc (−v) .

Proposition 2. The indispensable part S (A ) of the universal Markov basis
consists of all nonzero vectors in L (A ) which have no proper semiconformal
decomposition.

Let u,u1, . . . ,ul ∈ L (A ), l ≥ 2. We say that u =ssc u1 + · · ·+ ul , is a
strongly semiconformal decomposition if u= u1+ · · ·+ul and the following
conditions are satisfied:

u+ > u+
1 and u+ > (

i−1

∑
j=1

u j)+u+
i for all i = 2, . . . , l.

When l = 2, we simply write u = u1 +ssc u2. Note that u = u1 +ssc u2 implies
that u+ > u+

1 and u− > u−2 . We say that the decomposition is proper if all
u1, . . . ,ul are nonzero. We remark that if u =ssc u1 + · · ·+ul is proper then
u+,u+ − u1, . . . ,u+ −∑

l
i=1 ui = u− ∈ Nn and thus are distinct elements of

Fu. In the following lemma we show the implications amongst the three
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types of decompositions we defined above. It is immediate that if u has a
proper conformal decomposition then u has a proper strongly semiconformal
decomposition and if u has a proper strongly semiconformal decomposition
then u has a proper semiconformal decomposition.

Proposition 3. The universal Markov basis (M )(A ) of A consists of all
nonzero vectors in L (A ) with no proper strongly semiconformal decompo-
sition.

2 Markov complexity

For A ∈ (M )m×n(N) and r ≥ 2, the r–th Lawrence lifting of A is denoted by
A(r) and is the (rm+n)× rn matrix

A(r) =

r−times︷ ︸︸ ︷
A 0 0
0 A 0

. . .
0 0 A
In In · · · In


,

see [10]. We write L (A (r)) for KerZ(A(r)), denote by A (r) the matrix A(r),
and identify an element of L (A (r)) with an r× n matrix: each row of this
matrix corresponds to an element of L (A ) and the sum of its rows is zero.
The type of an element of L (A (r)) is the number of nonzero rows of this
matrix. The Markov complexity, m(A ), is the largest type of any vector in
the universal Markov basis of A(r) as r varies. The Graver complexity of
A , g(A ), is the largest type of any vector in the Graver basis of A(r), as r
varies. We note that the study of A(r), for A ∈ (M )m×n(N) was motivated by
consideration of hierarchical models in Algebraic Statistics, see [10]. Aoki
and Takemura, in [3], while studying Markov bases for certain contingency
tables with zero two-way marginal totals, gave the first examples of matrices
with finite Markov complexity, see [3, Theorem 4]. In [10, Theorem 1], Santos
and Sturmfels proved that m(A ) is bounded above by the Graver complexity
of A , g(A ), and since the latter one is finite, m(A ) is also finite. In fact,
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g(A ) is the maximum 1-norm of any element in the Graver basis of the Graver
basis of A , [10, Theorem 3]. Up to now, no formula for m(A ) is known in
general and there are only a few classes of toric ideals for which m(A ) has
been computed, see [2, 3, 10].

3 Monomial curves and their complexity

The topic of monomial curves has been the subject of extensive research ever
since Herzog in [7] studied such configurations. We recall that a monomial
curve in the d-dimensional affine space Ad is defined as the curve {(tn1 , . . . , tnd ) :
t ∈ k}, where n1, . . . ,nd are positive integers such that gcd(n1, . . . ,nd) = 1. In
[7, Theorem 3.8], it was shown that the toric ideal IA , for A = {n1,n2,n3} ⊂
Z>0, is either a complete intersection or if not, then it is minimally generated
by exactly three binomials. We note that Herzog in [7] describes all possible
minimal generating sets of IA in either case. To be more precise, with the
notation of [7], for i ∈ {1,2,3} we consider ci to be the smallest element of
Z>0 such that there exist integers ri j,rik ∈N with {i, j,k}= {1,2,3}, and with
the property that cini = ri jn j + riknk. What determines whether IA is a com-
plete intersection or not is whether there are i, j ∈ {1,2,3} such that ri j = 0.
If ri j > 0 for all i, j = 1,2,3 then IA is minimally generated by exactly three
binomials and in this case, IA has a unique minimal generating set which
is explicitly described in [7, Proposition 3.2, Proposition 3.3]. If there exist
i, j ∈ {1,2,3} such that ri j = 0 then IA is a complete intersection and has no
unique minimal binomial generating set. In this case the universal Markov
basis of A is explicitly described in [7, Proposition 3.5].

The next two Theorems from [4] compute m(A ), when A is a monomial
curve in A3. This answers a question posed by Santos and Sturmfels in [10],
see Example 6 of that paper.

Theorem 1. Let A = {n1,n2,n3} be such that IA is not a complete inter-
section. Then m(A ), the Markov complexity of A , is 3. Moreover, for any
r≥ 3 we have (M )(A (r)) = (S )(A (r)) and the cardinality of (M )(A (r)) is
k
(r

2

)
+6
(r

3

)
, where k is the cardinality of the Graver basis of A .

Theorem 2. Let A = {n1,n2,n3} be such that IA is a complete intersection.
Then m(A ), the Markov complexity of A , is 2. Moreover, for any r ≥ 2
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we have (M )(A (r)) = (S )(A (r)) and the cardinality of (M )(A (r)) is k
(r

2

)
,

where k is the cardinality of the Graver basis of A .

The next results concern the Markov complexity of of monomial curves
in Am,m ≥ 4. After more than a year working with 4ti2 [1] on comput-
ing Markov complexities for monomial curves in the four dimensional space
we manage to find examples of monomial curves in A4 with arbitrary large
Markov complexity. To do that we studied the family of monomial curves
A = {1,n,n2− n,n2− 1} and we were able to prove that for A = {1,n,n2−
n,n2− 1} there is always the following element of type n in every Markov
basis of every Lawrence lifting A(r) for r ≥ n :

1 −1 −1 1
1 −1 −1 1

. . .
1 −1 −1 1
0 0 n+1 −n

2−n n−2 −3 2


Thus we conclude with three Theorems from [9]:

Theorem 3. Monomial curves in A4 may have arbitrary large Markov com-
plexity.

Since every element of the family A = {1,n,n2−n,n2−1} is a complete
intersection we get also:

Corollary 1. Complete intersection monomial curves in A4 may have arbi-
trary large Markov complexity.

Finally by proving that Markov bases of Lawrence liftings behave well
with respect to certain eliminations we could generalize Theorem 3 for all
monomial curves in Am, m≥ 4

Corollary 2. Monomial curves in Am, m≥ 4, may have arbitrary large Markov
complexity.
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The integrated Pearson family of distributions and its orthogonal polynomials. 
 

 
13:20 – 13:55 

 

 
 Δ. Κουγιουμτηισ (Α.Π.Θ.) 
 
Χρονοςειρζσ και πολφπλοκα δίκτυα. 
Time series and complex networks. 
 

 

 



Α.Ε.

ΧΟΡΗΓΟΙ

ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ
ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ






